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Abstract. In this work we provide a categorical formalization of several
constructions found in transformational music theory. We first revisit
David Lewin’s construction of a Generalized Interval System (GIS) to
show that even a subset of the GIS conditions already implies a sequence
of functors between categories. When all the conditions in Lewin’s defini-
tion are fullfilled, this sequence involves the category of elements

∫
G
S for

the group action S : G → Sets implied by the GIS structure. By focus-
ing on the role played by categories of elements in such a context, we
reformulate previous definitions of transformational networks in a Cat-
based diagrammatic perspective, and present a new definition of cate-
gorical transformational networks, or CT-Nets, in more general musical
categories. We show how such an approach provides a bridge between
algebraic, geometrical, and graph-theoretical approaches in transforma-
tional music analysis. We end with a discussion on the new perspectives
opened by such a formalization of transformational theory, in particu-
lar with respect to Rel-based transformational networks which occur
in well-known music-theoretical constructions such as Douthett’s and
Steinbach’s Cube Dance.

Keywords: Transformational Music Theory · Generalized Interval
System · David Lewin · Category Theory · Transformational
Networks · CT-Nets · Cube Dance

1 Introduction

Transformational theory represents a challenging topic in contemporary “math-
emusical” research. It not only constitutes a turning point in the field of music
analysis but also naturally leads to fundamental questions about the object-based
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vs. operation-based duality in the formalization of musical structures and pro-
cesses. Starting from the original group-based contributions by David Lewin in
the field of transformational music theory and analysis, the role of category theory
has been quickly recognized [13–15,17,24] as a useful foundation in order to build
extended generalizations. Following previous work on the categorical formaliza-
tion of Lewin’s transformational theory and transformational networks in music
analysis, this paper has two main goals. In a first part, we show how a restricted
form of Lewin’s definition of Generalized Interval Systems implicitly defines dia-
grams of categories. In case all the conditions of Lewin’s definition are fullfilled,
these diagrams involve the notion of categories of elements. We take this observa-
tion as the starting point for further generalization and discuss the importance of
such categories for transformational music theory and for graph-based geometrical
approach. This shift in focus allows us, in a second part, to revisit Klumpenhouwer
networks and to provide a new definition of categorical transformational networks
(“CT-Nets”), as well as that of morphisms between them.

2 Revisiting Lewin’s Generalized Interval Systems
from a Categorical Perspective

In this section, we will show that a Generalized Interval System (GIS) of Lewin
[10] inherently defines a category, which coincides with the category of elements
for the group action the GIS defines due to the additional conditions imposed
by Lewin.

2.1 Lewin’s Generalized Interval Systems

We recall here Lewin’s definition of a Generalized Interval System (GIS) for
transformational music analysis.

Definition 1 (Lewin, 1987). A Generalized Interval System (GIS) is a triple
(X, IV LS, int) where

– X is a set of musical elements,
– IV LS is a group (the group of intervals for the GIS), and
– int is a function X × X → IV LS

such that

1. for all x, y, and z in X, int(x, y) ∗ int(y, z) = int(x, z), and
2. for all x ∈ X and g ∈ IV LS, there exists a unique y ∈ X such that int(x, y) = g.

We know from Vuza [28, p. 270] and Kolman [9, p. 157] that the data of a GIS
is equivalent to the data of a simply transitive (right) group action of IV LS on
the set X, or equivalently, of a representable functor IVLSop → Sets1Note that
1 By an abuse of notation, for a given group G, we will notate throughout this paper its

corresponding single-object category as G. All functors are assumed to be covariant.
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Lewin [10, pp 157–158] also discusses how a GIS can be obtained from a simply
transitive left action of a group STRANS on a set, by constructing a group
IV LS isomorphic to STRANSop. This result was extended to an equivalence of
categories between the category of GISs and the category of left simply transitive
actions by Fiore [5, p. 10]. Note that if we replace condition (1) by int(y, z) ∗
int(x, y) = int(x, z), we obtain the data of a simply transitive left group action
of IV LS on X.

The condition (2) is necessary to construct the group action of IV LS on X
from the data of the GIS. Indeed, we can observe that it enforces the surjectivity
of the interval function int. Without condition (2), the function int : X × X →
IV LS may not be surjective, and there would then be elements of IV LS for
which we cannot define their action on X. However we show in the following
proposition that condition (1) alone in Lewin’s definition inherently defines the
data of a category C along with a functor to the group associated to the function
int. Note that we use the alternative form of condition (1) to agree with the usual
composition of morphisms in a category.

Proposition 1. We consider a triple (X,G, int) where

– X is a set of musical elements,
– G is a group, and
– int is a function X × X → G such that for all x, y, and z in X, int(y, z) ∗

int(x, y) = int(x, z).

This defines the data of a category C along with a functor C → G.

Proof. We construct C as the category having X as its set of objects, such that
for all (x, y) ∈ X2, Hom(x, y) = {(x, y)}. This is called the indiscrete category
on X. Composition of morphisms is straightforward, with (y, z)(x, y) = (x, z).
By the properties of the function int, we can immediately define a functor from
C to G. ��

We now recall the definition of the category of elements (also called the
Grothendieck construction) for a functor S : C → Sets.

Definition 2. Let S : C → Sets be a functor from a category C to Sets. The
category of elements

∫
C

S is defined as the category having

– objects of the form (X,x) with X an object of C and x an element of the set
S(X), and

– morphisms between objects (X,x) and (Y, y) of the form (x, f, y) with f being
a morphism of C such that y = S(f)(x).

There is a canonical projection functor πS :
∫
C

S → C sending each object (X,x)
to X.

If both condition (1) and (2) are used in Proposition 1, we then obtain the
following immediate corollary.
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Corollary 1. Let (X,G, int) be a triple as defined in Proposition 1, such that
for all x ∈ X and g ∈ G, there exists a unique y ∈ X such that int(x, y) = g.
Then, the category C defined in Proposition 1 is the category of elements

∫
G

S
for the simply transitive group action S : G → Sets derived from (X,G, int)2.

In the following subsection, we explore how these results provide insights into
the relationship between transformational music theory and category theory.

2.2 From Lewin’s Generalized Interval Systems to Categories,
and to Graphs

As we have seen above, the condition (2) enforces the existence of a simply transi-
tive group action of G on X, i.e. a functor S : G → Sets mapping the single object
of G to X and which is representable. This gives rise to a sequence of functors of
the form

∫
G

S → G → Sets. Recent advances in transformational music theory
have made use of various groups acting on sets of musical elements. Such groups
do not always act in a simply transitive manner: this is the case for example of the
T/I group acting on pitch classes, or Hook’s UTT group [6] acting on major and
minor triads. Despite the absence of a corresponding GIS structure, they never-
theless are useful and widely used tools for transformational analysis [12].

In this regard, dropping condition (2) altogether encourages us to shift our
focus to categories rather than group actions, and to consider the functor C → G
implied by Proposition 1 as a key notion. We will show in this section how we
can generalize this observation by going beyond the definition of the interval
function int.

As a first observation, it can be noted that for any group G acting on a
set X we can always form the corresponding category of elements

∫
G

S. While
properly defining an interval function int might be complicated if the group
does not act in a simply transitive way, the definition of

∫
G

S and the associated
functor

∫
G

S → G already contains the necessary properties of composability
and associativity.

Recent research has emphasized the significance of extending beyond Lewin’s
original group-based approach, by, for instance, exploring the use of groupoids
or categories in general [21,23]. In this view, the group G and its action on a set
is replaced with a general functor S : C → Sets, and we can thus consider the
corresponding category of elements

∫
C

S together with the canonical projection
functor

∫
C

S → C.
This generalization can be extended further by recognizing that the definition

of the category of elements expands beyond functors to Sets. In particular, this
notion can be defined for functors S : C → Rel, in which Rel is the category
of finite sets and binary relations between them [27]. Such functors have been
shown to occur in transformational music analysis, for example as in the algebraic

2 In the particular case of a group action, the category of elements
∫
G
S is also called

the action groupoid. As discussed in the next section, this paper considers more
general cases and we thus retain “category of elements” as a common unifying term.
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Fig. 1. The quiver corresponding to the category of elements for the simply transitive
action of the PLR group on the set of major and minor triads. Edges (corresponding
to invertibles morphisms) are represented with undirected edges colored in gray for
clarity, except for morphisms projecting on R (red), P (blue), and L (green) in the
PLR group. This subquiver corresponds to the “chicken-wire torus” [4]. Best viewed
in color. (Color figure online)

formalization of the “Cube Dance” graph [19,22]. One advantage of using the
category of elements

∫
C

S is that it “forgets” the target category of the functor
S, whether it is Rel or Sets, which allows one to consider them on an equal
footing.

In passing, it can also be observed that the category of elements is a discrete
analogue to the fundamental groupoid of a topological space: objects of the fun-
damental groupoid are points of the space, and 1-morphisms are paths between
these points. This reconciles with Lewin’s view of transformations as ways to
pass from one object to another3.

Finally, it can be noted that the notion of category of elements estab-
lishes a bridge between algebraic transformational approaches and geometrical

3 During the redaction of this manuscript, the authors have been made aware by
Dmitri Tymoczko of his current work on groupoids. Category of elements are encoun-
tered as a common point between his approach, rooted in geometrical and topological
considerations, and ours, which stems from algebraic ones.
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graph-based approaches which have been studied extensively [2–4,18,25,26].
Indeed, it is well known that there is a forgetful functor from Cat to Quiv,
the category of quivers, i.e. directed multigraphs (“multidigraphs”). The for-
getful functor returns the underlying multidigraph of a category and forgets all
information about composition of arrows. Certain well-known musical graphs
can be obtained from the application of this forgetful functor. For example,
the so-called “chicken-wire torus” [4] is a sub-multidigraph of the multidigraph
obtained by application of the forgetful functor Cat → Quiv on the category
of elements

∫
PLR

S for the usual action S of the PLR group on the set of major
and minor triads. This is illustrated in Fig. 1, in which the multidigraph obtained
from the category of elements is depicted in gray (since the action is simply tran-
sitive, the corresponding quiver is a complete one), with the “chicken-wire torus”
highlighted in color.

This colored multidigraph is a special case of the category-based general
case, in which we consider the canonical projection functor

∫
C

S → C for a
general functor S : C → Sets. In this context, applying the forgetful functor
Cat → Quiv induces additional structure, as shown in the construction below.

Construction 1. Given a functor U → V, the forgetful functor Cat → Quiv
induces a coloring on nodes and edges of the multidigraph underlying U. The
nodes are colored in the set of nodes of the multidigraph corresponding to V,
while the edges are colored in the set of edges of same multidigraph.

In the above example, the category of elements
∫
PLR

S and the associated
functor

∫
PLR

S → PLR for the usual action S of the PLR group on the set of
major and minor triads gives an edge-colored multidigraph in which each edge
is colored (labelled) by an element of the PLR group. Note that we have colored
the edges in Fig. 1 in gray merely for clarity. The nodes have only one color since
we are considering a single-object category.

3 A New Definition of Transformational Networks

By following our shift of focus on categories of elements, we consider in this
section a new definition of transformational networks which relates musical
objects and transformations between them in a consistent diagram. Transforma-
tional networks first appeared in Lewin’s work [10], and so-called Klumpenhouwer
networks were developed by Klumpenhouwer [7,8,11] to specifically study pitch
classes and their transformations by the T/I group. In recent years, transfor-
mational networks have been revisited with new definitions from a categorical
perspective [16,20,21,24]. Our starting point is the definition of [21] which we
recall below.

Definition 3. Let C be a category, and S a functor from C to the category Sets
of (small) sets. Let Δ be a small category and R a functor from Δ to Sets with
non-empy values. A PK-net of form R and of support S is a 4-tuple (R,S, F, φ),
in which F is a functor from Δ to C, and φ is a natural transformation from R
to SF .
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As per the discussion above, our objective is to shift the focus from Sets-
based functors to the corresponding categories of elements, which we do by
leveraging the following theorem.

Theorem 2. Assume we have a PK-net (R,S, F, φ) of form R and of support
S. Then there exists a functor HF between the category of elements

∫
Δ

R and∫
C

S such that the top square in the following diagram commute.

Δ C

Sets

∫
Δ

R
∫
C

S
HF

πR πS

F

SR φ

Proof. We construct the functor HF as follows.

– For any object (X,x) of
∫

Δ
R, the functor HF sends it to (F (X), φX(x)).

– For any morphism (x, f, y) between two objects (X,x) and (Y, y) of
∫

Δ
R, the

functor HF sends this morphism to (φX(x), F (f), φY (y)).

The construction in the first item is consistent, since by the definition of the
natural transformation φ, φX(x) is indeed an element of SF (X). Similarly, the
construction in the second item is also consistent, since for any (x, y) such that
y = R(f)(x), we have φY (y) = SF (f)(φX(x)). We have HF ((y, f ′, z)(x, f, y)) =
HF ((y, f ′, z))HF ((x, f, y)) by horizontal composition of the natural transforma-
tion. ��

The definition of PK-nets allows us to define networks in which nodes are
sets, and not necessarily singletons. In this diagram, the role of the functor∫

Δ
R → Δ is to remember which objects of

∫
Δ

R belong to the same set. The
fact that the top square is commutative ensures that objects corresponding to
elements of the same set are transformed by the same transformations.

While this possibility gives more generality to transformational networks, the
majority of actual transformational analyses in the musicological literature uses
networks with only one musical object per node, i.e. singletons. In this case,

∫
Δ

R
is the same category as Δ, and since the data of the content of sets is no longer
relevant, this makes the functor

∫
Δ

R → Δ somewhat unnecessary. We will thus
now consider the specific case of singleton-based networks and drop this functor
altogether. We can then rename

∫
Δ

R as Δ to indicate its new role as a category
defining the skeleton of the transformational network to be considered.

We therefore obtain a sequence of functors of the form

Δ
∫
C

S C
M πS

which encodes transformational networks with a sin-
gle musical element on each node. The nodes and arrows of the network are
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given by the objects and morphisms of the category Δ. The functor M maps the
objects of Δ to the objects of

∫
C

S which, as we have seen above, corresponds to
musical elements. In other words, the functor M labels the nodes of the network
with musical elements. In addition, it maps the arrows of the network to mor-
phisms of

∫
C

S, which are then given a label in C (for example, group elements
if C is a group) by the functor πS :

∫
C

S → C. Thus, the functor πS ◦ M labels
the arrows of Δ with morphisms (transformations) of C.

Example 1. The transformational network represented below

B C�

E G�

T2

I9I3

T4

can be conceived as a sequence of functors Δ
∫
T/I

S T/I
M πS

, where

S : T/I → Sets is the usual action of the T/I group on pitch-classes, Δ is

the commutative square
X Y

Z W

f

gh

k

, and where

M(X) = B,M(Y ) = C�,M(Z) = E,M(W ) = G�, and

πS ◦ M(f) = T2, πS ◦ M(g) = I9, πS ◦ M(h) = I3, πS ◦ M(k) = T4.

In a final generalization, we can observe that, since we do not consider Sets-
based (or Rel-based) functors anymore, we can consider all categories in our
definition of a transformational network, and not just category of elements. We
thus obtain the following definition.

Definition 4. A categorical transformational network (CT-Net) is a sequence

of functors of the form Δ Cel CT
M π , where

– Δ is a category representing the skeleton of the network,
– Cel is a category whose objects represent musical objects of interest, with

morphisms between them, and
– CT is a category whose objects represent classes of musical objects, and musi-

cal transformations between them.

The nodes of the network are labelled by the images of the objects of Δ by M ,
and the edges of the network are labelled by the images of the morphisms of Δ
by π ◦ M .
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Note that we do not a priori impose conditions on the categories Cel and
CT , nor on the functor π. In fact, CT may well be Cel itself, in which case
transformations are individualized for each musical object.

Since our definition of transformational networks is entirely categorical, all
constructions in Cat (pullbacks, pushforwards, equalizers, etc.) can in fact be
used to construct new CT-Nets, as shown in the following example.

Example 2. Consider the two networks represented below,

C�

E

E

I5

T7

I2

C�

E

F�

I5

I10
T5

viewed as in the previous example as sequences of functors

Δ
∫
T/I

S T/I
M

M ′
. Taking the equalizer on the functors M and M ′ returns

a new sequence of functors

Δ′ Δ
∫
T/I

S T/I
M

M ′

and thus a new CT-Net representing the network each have in common, i.e.

C� E
I5

. Since such categorical constructions can readily be implemented
computationally, and more easily than the previously exposed transformational
network frameworks, this opens new perspectives for computational score anal-
ysis. Furthermore, as mentioned above, the passage from Cat to Quiv is func-
torial which allows to translate these constructions into the corresponding mul-
tidigraphs (and morphisms between them).

4 Morphisms of CT-Nets

In this section, we revisit the notions of morphisms of transformational networks
and explore their implications for diagrams involving categories of elements. We
will build upon the morphisms of PK-Nets defined in previous work, and in this
view we will revert to category of elements for functors C → Sets before giving
the final definition in the general case.

We first consider the notion of complete homographies introduced in the
formalization of PK-Nets [20]. We recall their definition below.

Definition 5. Let (R,S, F, φ) be a PK-Net, and assume we have a functor
S′ : C′ → Sets. A complete homography is a pair (N, ν) with
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– N : C → C′, and
– ν : SF → S′FN such that ν = ν̃F , where ν̃ is a natural transformation from

S to S′N

Applying (N, ν) on the PK-net (R,S, F, φ) transforms it into the new PK-Net
(R,S′, FN, ν ◦ φ).

When C and C′ are groups, with simply transitive group actions, this is
known as a morphism of GIS [5]. For a given complete homography, we can apply
Theorem 2 on the diagram formed by S and S′N . This defines a functor HN from
∫
C

S to
∫
C′ S′. Starting from a transformational network Δ

∫
C

S C
M πS ,

we thus obtain a new transformational network, as shown in the diagram below.

Δ
∫
C

S C

∫
C′ S′ C′

M πS

HN ◦ M HN

πS′

N

Secondly, we consider local transformations [23], which are natural trans-
formations ν̂ : F → F ′, extended by S such that φ′ = (Sν̂)φ. In such a case,
it can readily be seen that the natural transformation ν̂ : F → F ′ induces
a natural transformation ην̂ : HF → HF ′ between the corresponding functors
HF :

∫
Δ

R → ∫
C

S and HF ′ :
∫

Δ
R → ∫

C
S. We then obtain the following dia-

gram.

Δ
∫
C

S C

HF

HF ′

πSην̂

By combining these two notions, and by generalizing it through the possibility
of changing the category Δ, we propose a unified notion of morphism of CT-Nets
as defined below.

Definition 6. A morphism between two categorical transformational networks

Δ Cel CT
M π and Δ′ C′

el C′
T

M ′ π′
is defined as a 4-tuple

(I,N,HN , ν) such that the following diagram commutes.

Δ Cel CT
M π

Δ′ C′
el C′

T
M ′ π′

I HN Nν

Morphisms of CT-Nets are composable, via the appropriate stacking of the cor-
responding diagrams.
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In the above definition of a morphism of CT-Nets, the rightmost square
represents a global transformation of the musical elements and the correspond-
ing transformations between them, independently of the specific network Δ. As
detailed above, if Cel is the category of elements for a given group action, this
corresponds to a morphism of a group action. The leftmost square represents a
local transformation of the network nodes: the components of the natural trans-
formation ν are morphisms in C′

el, which can be given labels via π′ in C′
T . We

give below an example of such a combination of global and local transformation.

Example 3. The two transformational networks shown below are 〈T2〉-isographic
in the sense of Klumpenhouwer.

B C�

E G�

T2

I9I3

T4

G� B�

F A

T2

I9I3

T4

However, no morphism of the T/I group action can transform the first into
the second. This can nevertheless be achieved with a combination of a global
transformation with a local one, as shown below. We refer the reader to [20] for
more details about global and local transformations of networks.

G� B�

F A

T2

I7I1

T4

B C�

E G�

T2

I9I3

T4

E� F

C E

T2

I9I3

T4

〈T2〉

T8 T8

T4 T4

5 Conclusions

In this work, we have revisited Lewin’s original framework of Generalized Interval
Systems from a categorical perspective, by stressing the importance of diagrams
Cel → CT , in which Cel is a category of musical objects which maps onto CT ,
a category of musical transformations. We have shown that Lewin’s definition
of GIS implictly contains the definition of such a diagram, and that the condi-
tion for simple transitivity turns Cel into the category of elements

∫
G

S for the
corresponding group action S : G → Sets. This consideration extends beyond
group and group actions however, and category of elements

∫
C

S for a given
functor S : C → Sets or even S : C → Rel may be considered. Ultimately, one
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may consider diagrams Cel → CT in which Cel is not necessarily a category of
elements.

Drawing from previous work on the formalization of transformational net-
works, we have proposed a new categorical definition of transformational net-
works, hence called CT-Nets, as a sequence of functors Δ → Cel → CT , in which
Δ represents the skeleton of the network. The definition operates directly in Cat,
and thus unifies the consideration of Sets- and Rel-based functors at once. The
definition of morphisms of CT-Nets results from previous considerations of global
and local morphisms, the former corresponding to global transformations of the
musical action, independently of the network being considered, the latter corre-
sponding to individual node transformations. As diagrams, CT-Nets can undergo
the machinery of all constructions in Cat (pullbacks, pushforwards, equalizers,
etc.) to give new networks. In addition, the forgetful functor Cat → Quiv
readily gives the corresponding multidigraphs (and morphisms between them),
bridging algebraic and geometrical graph-based methods in music theory.

This new categorical formalization of transformational networks also opens
further research perspectives. For example, while categories of elements can be
constructed for functors C → Rel, Theorem 2 cannot be applied to relational
PK-nets as introduced in [22] if the natural transformation φ is a binary relation
and not simply a function. In such a case, the machinery of profunctors [1] may
be used between the corresponding category of elements, with new implications
regarding the musicological meaning of transformations between musical objects.
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