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Abstract. The “colored Cube Dance” is an extension of Douthett’s and
Steinbach’s Cube Dance graph, related to a monoid of binary relations
defined on the set of major, minor, and augmented triads. This contri-
bution explores the automorphism group of this monoid action, as a way
to transform chord progressions. We show that this automorphism group
is of order 7776 and is isomorphic to (Z3

4 ! D8) ! (D6 × Z2). The size
and complexity of this group makes it unwieldy: we therefore provide an
interactive tool via a web interface based on common HTML/Javascript
frameworks for students, musicians, and composers to explore these auto-
morphisms, showing the potential of these technologies for math/music
outreach activities.
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1 An Algebraic Introduction to the Colored Cube Dance

The Cube Dance is a well-known structure introduced by Douthett and Stein-
bach in their work on parsimonious graphs between triads [4]. Its definition
involves the P1,0 binary relation which relates two pitch-class sets if they differ
by a single pitch class a semitone apart. The Cube Dance is then defined as
the graph having the major, minor, and augmented triads as its vertices and
the set of pairs of triads related by P1,0 as its set of edges. Since the classical
neo-Riemannian P and L operations imply the P1,0 binary relation, some recent
work [7] has investigated an extension of the Cube Dance wherein further refine-
ments of the P1,0 relation are considered. More precisely, three binary relations
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Fig. 1. The colored Cube Dance graph for the binary relations U (color: black/BW:
black), P (color: orange/BW: gray), and L (color: dashed green/BW: dashed gray).
(Color figure online)

U , P, and L are defined on the set of major, minor, and augmented triads as
follows. The notation we adopt for these triads is of the form xs, where x is a
pitch class (the root for major, and minor triads, or any note for augmented
triads), and s is a subscript (‘M’, ‘m’, or ‘aug’) indicating the type of triad.

Definition 1. Let X be the set of the 24 major and minor triads and the four
augmented triads.

– The relation P is the symmetric relation which coincides with the neo-
Riemannian P operation on major and minor triads and is the identity rela-
tion on augmented triads.

– The relation L is the symmetric relation which coincides with the neo-
Riemannian L operation on major and minor triads and is the identity rela-
tion on augmented triads.

– The relation U is the symmetric relation which relates an augmented triad
with a major or minor triad if they are related by the P1,0 relation.

The ‘colored Cube Dance graph’ (Fig. 1) is then defined as the graph having
X as its set of vertices, and the set of pairs of triads related by either U , P,
or L as its set of edges, each edge having a canonically attributed color in the
set {U ,P,L}. From an algebraic point of view, these binary relations generate
a monoid MU,P,L with an action on X, which corresponds in categorical terms
to the definition of a functor S : MU,P,L → Rel, and whose structure has been
investigated in [7].
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Proposition 1. The monoid MU,P,L generated by the relations U , P, and L
contains 40 elements and has the following presentation.

MU,P,L = 〈U ,P,L | P2 = L2 = e, LPL = PLP, U3 = U ,
UP = UL, PU = LU , U2PU2 = PU2PU2P,

(UP)2U2 = P(UP)2U2P, U2(PU)2 = PU2(PU)2P〉

The categorical point of view allows us to consider automorphisms of the
functor S (i.e. automorphisms of the monoid action), whose general definition
has been given in [6,7] and which simplifies in this case as follows.

Definition 2. The automorphism group Aut(S) of the functor S : MU,P,L →
Rel is the group of pairs (N, ν) where N : MU,P,L → MU,P,L is an automor-
phism, and ν is a bijection on X such that we have pRq =⇒ ν(p)N(R)ν(q) for
all R ∈ MU,P,L and (p, q) ∈ X2. Composition is done term-wise.

It should be noted that the normal subgroup of Aut(S) of automorphisms of
the form (id, ν) is isomorphic to the normal subgroup of graph automorphisms
leaving the color of edges invariant. Some of these automorphisms are notably
involved in chord progressions in pop music [1,6]. The computation of the full
automorphism group of the monoid action is therefore of interest, giving tools for
musicians and composers to transform chord progressions in the colored Cube
Dance. We establish its structure in the next Section.

2 The Automorphism Group of the Monoid Action
of MU ,P,L

The automorphism group of the monoid MUPL itself has been determined in [7].

Theorem 1. The automorphism group of the MUPL monoid is isomorphic to
the group D6 × Z2.

Each automorphism N of MUPL is entirely determined by an automorphism
of the subgroup isomorphic to D6 generated by P and L, and by the choice of
the image of U by N in the set {U ,LUL}. The main result of this paper is the
structure of the automorphism group of the monoid action S : MUPL → Rel.

Theorem 2. The automorphism group of the functor S : MUPL → Rel is a
group of order 7776 isomorphic to (Z3

4 ! D8) ! (D6 × Z2).

Proof. We sketch here the methodology for the proof, leaving the full enumer-
ation of the cases to the reader. We denote by CM the set {CM , EM , A"M}, by
Fm the set {Fm, Am,D"m}, and so on.

Let N be an automorphism of MUPL. Assume for example that N(U) = U .
We then look for the possible bijections ν of X: these will obviously map the
subset {Caug, Gaug,Daug, Faug} onto itself. At this point, we can freely choose
the image of Caug by ν: assume for example that ν(Caug) = Gaug. Since Caug
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Table 1. Graphical representation of the possible automorphisms (N, ν) of the functor
S : MU,P,L → Rel. The mapping of subsets XM is determined by the permutation of
augmented chords, by the image of the generator U by N , and by the action of the
group elements gi in Z3.

N(U) = U N(U) = LUL
Caug Gaug Daug Faug

Caug Gaug Daug Faug

CM GM DM FM

CM GM DM FM

g0 g1 g2 g3

Caug Gaug Daug Faug

Caug Gaug Daug Faug

CM GM DM FM

Cm Gm Dm Fm

g0 g1 g2 g3

Caug Gaug Daug Faug

Caug Gaug Daug Faug

CM GM DM FM

CM GM DM FM

g0 g1 g2
g3

Caug Gaug Daug Faug

Caug Gaug Daug Faug

CM GM DM FM

Cm Gm Dm Fm

g0 g1 g2
g3

Caug Gaug Daug Faug

Caug Gaug Daug Faug

CM GM DM FM

CM GM DM FM

g0 g1g2 g3

Caug Gaug Daug Faug

Caug Gaug Daug Faug

CM GM DM FM

Cm Gm Dm Fm

g0 g1g2 g3

Caug Gaug Daug Faug

Caug Gaug Daug Faug

CM GM DM FM

CM GM DM FM

g0g1 g2 g3

Caug Gaug Daug Faug

Caug Gaug Daug Faug

CM GM DM FM

Cm Gm Dm Fm

g0g1 g2 g3

Caug Gaug Daug Faug

Caug Gaug Daug Faug

CM GM DM FM

Cm Gm Dm Fm

g0g1g2
g3

Caug Gaug Daug Faug

Caug Gaug Daug Faug

CM GM DM FM

CM GM DM FM

g0g1g2
g3

Caug Gaug Daug Faug

Caug Gaug Daug Faug

CM GM DM FM

Cm Gm Dm Fm

g0 g1g2g3

Caug Gaug Daug Faug

Caug Gaug Daug Faug

CM GM DM FM

CM GM DM FM

g0 g1g2g3

Caug Gaug Daug Faug

Caug Gaug Daug Faug

CM GM DM FM

Cm Gm Dm Fm

g0g1 g2g3

Caug Gaug Daug Faug

Caug Gaug Daug Faug

CM GM DM FM

CM GM DM FM

g0g1 g2g3

Caug Gaug Daug Faug

Caug Gaug Daug Faug

CM GM DM FM

Cm Gm Dm Fm

g0g1g2 g3

Caug Gaug Daug Faug

Caug Gaug Daug Faug

CM GM DM FM

CM GM DM FM

g0g1g2 g3
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is related to the elements in CM ∪ Fm by the relation U , it is implied by the
definition of ν and the fact that N(U) = U that CM ∪ Fm should be bijectively
mapped by to the subset GM ∪ Cm. Since the subset CM (resp. Fm) is an
orbit of CM by the subgroup of D6 isomorphic to Z3 generated by LP, we
conclude by the definition of ν that either CM is mapped to GM and Fm to
Cm, or the other way around. Assume the first case, and note that each of
this mapping is entirely determined by the choice of a representative element in
each subset and an element of the subgroup of D6 isomorphic to Z3 generated
by LP. We then have that Cm is mapped to Gm and FM to CM . Since the
elements of Cm are related to Gaug by U , it is implied by the definition of ν
and the fact that N(U) = U that Gaug should be mapped to Daug. Similarly,
we get that Faug should be mapped to Caug. By continuing this enumeration,
we arrive at the graphical representations of automorphisms given in Table 1.
The group of permutations of the set {Caug, Gaug,Daug, Faug} is isomorphic to
D8, and this automatically determines the permutation of the set of subsets
{CM , GM ,DM , FM}. For a given permutation of this set, each element gi is a
group element in Z3 determining how the subsets are mapped, assuming a set
of representative elements has been fixed beforehand. It can then readily be
seen that Aut(S) is isomorphic to (Z3

4 ! D8) ! (D6 × Z2), a group of order
(34 ∗ 8) ∗ (6 ∗ 2) = 7776. )*

3 An Interactive Interface for Composing (with)
Automorphisms

Contrary to the neo-Riemannian PLR group, the size and complexity of Aut(S)
makes it hard to use with pen and paper, especially for non-mathematicians wish-

Fig. 2. Screenshot of the web interface for manipulating the automorphisms of the
colored Cube Dance.
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ing to explore its potential for transforming chord progressions. In this light, we
have developed a web interface for the concrete manipulation of the elements of
Aut(S), and for their use as chord transformations. A screenshot of this interface
is shown in Fig. 2. It uses common HTML and Javascript frameworks [3], thus
making it runnable on virtually any web browser without the need for compli-
cated software installations. Such frameworks have already been used for other
mathematics/music applications, notably to explore the Tonnetz [5]. The web
interface can directly be used from the corresponding GitHub repository [2] and
the associated source code is freely available.

As shown on Fig. 2, the left part of the interface corresponds to the inter-
active choice of an automorphism of the colored Cube Dance. The middle part
is an interactive colored Cube Dance: alt-clicking on chords adds them to the
current chord progression, which is shown on the right part of the interface,
along with its successive transformation by the selected automorphisms. Each
chord progression can be played back with the corresponding buttons. In the
future, the interface will also feature MIDI capabilities, so that chord progres-
sions could be recorded, transformed, and replayed at will (see [5] for a current
implementation of such capabilities). Following the pattern of Table 1, the user
first selects a mapping of the generators of MUPL, then a permutation of the
augmented chords, and finally a mapping of the major/minor chords through the
mapping of a given representative in each quadrant. Once an automorphism has
been uniquely determined, the user can hover over chords in the middle repre-
sentation of the colored Cube Dance to see how they are mapped by the selected
element of Aut(S). The ‘add to list’ button appends the selected automorphism
to the list on the right, in which the current chord progression is successively
transformed through automorphism composition.

The combination of SVG graphics possibilities in HTML with Javascript
allows one to quickly develop user-friendly interfaces for math/music concepts,
thus showing the potential of these technologies for outreach activities. It is our
hope that the colored Cube Dance web interface will prove useful for students,
musicians, and composers to creatively explore chord transformations via auto-
morphisms.
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