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In the field of transformational music theory, which emphasizes the possible transformations between
musical objects, Klumpenhouwer networks (K-nets) constitute a useful framework with connections in
both group theory and graph theory. Recent attempts at formalizing K-nets in their most general form
have evidenced a deeper connection with category theory. These formalizations use diagrams in sets,
i.e. functors C → Sets where C is often a small category, providing a general framework for the known
group or monoid actions on musical objects. However, following the work of Douthett–Steinbach and
Cohn, transformational music theory has also relied on the use of relations between sets of the musical
elements. Thus, K-net formalizations should be extended further to take this aspect into account. The
present article proposes a new framework called relational PK-nets, an extension of our previous work
on poly-Klumpenhouwer networks (PK-nets), in which we consider diagrams in Rel rather than Sets. We
illustrate the potential of relational PK-nets with selected examples, by analyzing pop music and revisiting
the work of Douthett–Steinbach and Cohn.
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1. Introduction: from K-nets and PK-nets to relational PK-nets

We begin this section by recalling the definition of a poly-Klumpenhouwer network (PK-net),
and then discuss its limitations, as a motivation for introducing relational PK-nets.

1.1. The categorical formalization of poly-Klumpenhouwer networks (PK-nets)

Following the work of Lewin (1982, 1987), transformational music theory has progressively
shifted the music-theoretical and analytical focus from the “object-oriented” musical content to
the operational musical process. As such, transformations between musical elements are empha-
sized. In the original framework of Lewin, the set of transformations often forms a group, with
a corresponding group action on the set of musical objects. Within this framework, Klumpen-
houwer networks (henceforth K-nets) have stressed the deep synergy between set-theoretical
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and transformational approaches thanks to their anchoring in both group theory and graph the-
ory, as observed by many scholars (Nolan 2007). We recall that a K-net is informally defined as
a labelled graph, wherein the labels of the vertices belong to the set of pitch classes, and each
arrow is labelled with a transformation that maps the pitch class at the source vertex to the pitch
class at the target vertex. An example of a K-net is given in Figure 1. Klumpenhouwer networks
allow one conveniently to visualize at once the musical elements and selected transformations
between them.

Figure 1. A Klumpenhouwer network (K-net) describing a major triad. The arrows are labelled with specific
transformations in the T /I group relating the pitch classes in their domain and codomain.

Following David Lewin’s (1990) and Henry Klumpenhouwer’s (1991) original group-
theoretical description, theoretical studies of K-nets have mostly focused until now on the
underlying algebraic methods related to the group of automorphisms of the T /I group or of the
more general T /M affine group (Lewin 1990; Klumpenhouwer 1998). Following the very first
attempt by Mazzola and Andreatta at formalizing K-nets in a more general categorical setting
as limits of diagrams within the framework of denotators (Mazzola and Andreatta 2006), a cat-
egorical construction called poly-Klumpenhouwer networks (henceforth PK-nets) has recently
been proposed, which generalizes the notion of K-nets in various ways (Popoff, Andreatta, and
Ehresmann 2015; Popoff et al. 2016).

We begin by recalling the definition of a PK-net, introduced first by Popoff, Andreatta, and
Ehresmann (2015).

Definition 1.1 Let C be a category, and S a functor from C to the category Sets of (small) sets.
Let ! be a small category and R a functor from ! to Sets with non-empy values. A PK-net of
form R and of support S is a 4-tuple (R, S, F, φ), in which F is a functor from ! to C, and φ is a
natural transformation from R to SF.

Figure 2. Diagrammatic representation of a PK-net (R, S, F, φ).

A PK-net can be represented by the diagram of Figure 2. We now detail below the importance
of each element in this definition with respect to transformational music analysis. The category C
and the functor S : C → Sets represent the context of the analysis. Traditional transformational
music theory commonly relies on a group acting on a given set of objects: the most well-known
examples are the T /I group acting on the set of the twelve pitch classes, the same T /I group
acting simply transitively on the set of the 24 major and minor triads, or the PLR group acting
simply transitively on the same set, to name a few examples. From a categorical point of view,
the data of a group and its action on a set is equivalent to the data of a functor from a single-object
category with invertible morphisms to the category of sets. However, this situation can be further
generalized by considering any category C along with a functor S : C → Sets. The morphisms
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of the category C are therefore the musical transformations of interest. For example, Noll has
studied previously a monoid of eight elements and its action on the set of the twelve pitch classes
(Noll 2005; Fiore and Noll 2011): this monoid can be considered as a single-object category C
with eight non-invertible morphisms along with its corresponding functor S : C → Sets, where
the image of the only object of C is the set of the twelve pitch classes.

The category ! serves as the abstract skeleton of the PK-net: as such, its objects and mor-
phisms are abstract entities, which are labelled by the functor F from ! to the category C. By
explicitly separating the categories ! and C, we allow for the same PK-net skeleton to be inter-
preted in different contexts. For example, a given category C may describe the relationships
between pitch classes, while another category C′ may describe the relationships between time
spans (Lewin 1987). Different functors F : ! → C or F ′ : ! → C′ will then label the arrows
of ! differently with transformations from C or C′, depending on whether the PK-net describes
pitch classes or time spans. Two PK-nets may actually be related by different kinds of morphisms
of PK-nets, which have been described previously (Popoff, Andreatta, and Ehresmann 2015;
Popoff et al. 2016).

Figure 3. (a) Diagram showing the constitutive elements of an example PK-net (R, S, F, φ). (b) A simplified represen-
tation of the same PK-net, wherein the arrows are directly labelled by their F-images, and the elements of the R-images
of the objects of ! are directly labelled by their φ-component-images.
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Note that the objects of ! do not represent the actual musical elements of a PK-net: these are
introduced by the functor R from ! to Sets. This functor sends each object of ! to an actual
set, which may contain more than a single element, and whose elements abstractly represent
the musical objects of study. However, these elements are not yet labelled. In the same way
the morphisms of ! represent abstract relationships which are given a concrete meaning by the
functor F, the elements in the images of R are given a label in the images of S through the natural
transformation φ. The elements in the image of S represent musical entities on which the category
C acts, and one would therefore need a way to connect the elements in the image of R with those
in the image of S. However, one cannot simply consider a collection of functions between the
images of R and the images of S in order to label the musical objects in the PK-net. Indeed, one
must make sure that two elements in the images of R which are related by a function R( f ) (with
f being a morphism of !) actually correspond to two elements in the images of S related by the
function SF( f ). The purpose of the natural transformation φ is thus to ensure the coherence of
the whole diagram. The diagram of Figure 3(a) on the previous page sums up the constitutive
elements of a simple PK-net (R, S, F, φ) where the category C is the T /I group considered as a
single-object category, the image of this object by the functor S being the set Z12 of the twelve
pitch classes. This PK-net can be represented in the simplified form of Figure 3(b) wherein the
functors R, S, F, and the natural transformation φ are implicit.

While PK-nets have been so far defined in Sets, there is a priori no restriction on the category
that should be used as the codomain of the functors R and S. For example, the approach of
Mazzola and Andreatta (2006) uses modules and categories of module-valued presheaves. As
noticed by Popoff, Andreatta, and Ehresmann (2015), PK-nets could also be defined in such
categories. Alternatively, the purpose of the present article is to consider relational PK-nets in
which the category Sets of sets and functions between them is replaced by the category Rel of
sets and binary relations between them. The reasons for doing so are detailed in the next sections.

1.2. Limitations of PK-nets

The definition of PK-nets introduced above leads to musical networks of greater generality
than traditional Klumpenhouwer networks, as was shown previously by Popoff, Andreatta, and
Ehresmann (2015) and Popoff et al. (2016). In particular, it allows one to study networks of
sets of different cardinalities, not necessarily limited to singletons. We recall here a prototypical
example showing how a dominant seventh chord may be obtained from the transformation of an
underlying major chord, with an added seventh.

Example 1.2 Let C be the T /I group, considered as a single-object category, and consider its
natural action on the set Z12 of the twelve pitch classes (with the usual semitone encoding),
which defines a functor S : T/I → Sets. Let ! be the poset of the ordinal number 2, i.e. the
category with two objects X and Y and precisely one morphism f : X → Y , and consider the
functor F : ! → T/I which sends f to T4.

Consider now a functor R : ! → Sets such that R(X ) = {x1, x2, x3} and R(Y) = {y1, y2, y3, y4},
and such that R( f )(xi) = yi, for 1 ≤ i ≤ 3. Consider the natural transformation φ such that
φX (x1) = C, φX (x2) = E, φX (x3) = G, and φY (y1) = E, φY (y2) = G♯, φY (y3) = B, and φY (y4) =
D. Then (R, S, F, φ) is a PK-net of form R and support S which describes the transposition of the
C major triad to the E major triad subset of the dominant seventh E7 chord. The constitutive
elements of this PK-net (R, S, Fφ) are summed up in the diagram of Figure 4.

However, one specific limitation of this approach appears quickly: whereas transforma-
tions between sets of increasing cardinalities can easily be modelled in this framework,
transformations between sets of decreasing cardinalities sometimes cannot. Consider for example
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Figure 4. Diagram showing the constitutive elements of the simple PK-net (R, S, F, φ) of Example 1.2, which describes
the transposition of the C major triad to the E major triad subset of the dominant seventh E7 chord. The functor F sends
the objects X and Y to the group T /I considered as a single-object category, whose image S(•) by the functor S is the set
Z12 of the twelve pitch classes.

a PK-net (R, S, F, φ) with a category ! with at least two objects X and Y and a morphism
f : X → Y between them, a functor R : C → Sets such that |R(X )| > 1 and |R(Y)| > 1, and a
group C with a functor S : C → Sets. Consider two elements x1 and x2 of R(X ), an element
y of R(Y), and assume that we have R( f )(x1) = R( f )(x2) = y. By definition of the PK-net,
we must have SF( f )(φX (x1)) = SF( f )(φX (x2)) = φY (y), and since C is a group this imposes
φX (x1) = φX (x2), i.e. the two musical objects x1 and x2 must have the same labels.

As an example, there is no possibility to define a PK-net showing the inverse transfor-
mation from a dominant seventh E7 chord to a C major triad. If one tries to define a new
PK-net (R′, S, F ′, φ′) such that F ′( f ) = T8, R′(X ) = {x1, x2, x3, x4}, R′(Y ) = {y1, y2, y3}, and with
a natural transformation φ′ such that φ′

X (x1) = E, φ′
X (x2) = G♯, φ′

X (x3) = B, and φ′
Y (y1) = C,

φY (y2) = E, φY (y3) = G, then one quickly sees that no function R′( f ) can exist which would
satisfy the requirement that φ′ is a natural transformation from R to SF ′, since all the elements
constituting the seventh chord have different labels in Z12.

In a possible way to resolve this problem, and from the point of view that the E7 dominant
seventh chord consists of an E major chord with an added D note, we would intuitively like
to “forget” about the D and consider only the transformation of x1, x2, and x3 in R(X ) to y1,
y2, and y3 respectively in R′(Y ). In other words, we would like to consider partial functions
between sets, instead of ordinary ones. In order to do so, one must abandon the category Sets
and choose a category which makes it possible to consider such morphisms. This simple example
motivates the introduction in this paper of relational PK-nets valued in the category Rel of sets
and binary relations between them. Although there also exists a category Par whose objects
are sets and whose morphisms are partial functions between them, the use of Rel includes the
case of partial functions as well as even more general applications, as will be seen in the next
sections.

1.3. The use of relations in transformational music theory

The use of relations between musical objects figures prominently in the recent literature on music
theory. Perhaps one of the most compelling examples is the work of Douthett–Steinbach and
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Cohn on parsimonious voice leading and its subsequent formalization in the form of parsimo-
nious graphs (Douthett and Steinbach 1998; Cohn 2012). In order to formalize the notion of
parsimony, Douthett and Steinbach (1998) introduced the Pm,n relation between two pc-sets, the
definition of which we recall here. We recall that a pitch-class set (pc-set) is a set in Z12 (where
Z12 encodes the twelve pitch classes with the usual semitone encoding).

Definition 1.3 Let O and O′ be two pitch-class sets of equal cardinality. We say that O and O′ are
Pm,n-related if there exists a partition of O\O′ into two disjoint subsets O1 and O2 of cardinality
m and n respectively, along with injective functions τ1 : O1 → O′\O and τ2 : O2 → O′\O such
that

• the image sets τ1(O1) and τ2(O2) are disjoint, and
• τ1(x) = x ± 1, and τ2(x) = x ± 2.

In other words, if O′ is Pm,n-related to O, m pitch classes in O move by a semitone, while n
pitch classes move by a whole tone, the rest of the pitch classes being identical. For example,
the set {C, E, G} representing the C major chord is P1,0-related to the set {C, E♭, G} representing
the C minor chord, since they only differ by elements of the set {E, E♭} which are a semitone
apart. Note that Pm,n is a symmetric relation. From this definition, Douthett and Steinbach define
a parsimonious graph for a Pm,n relation on a set H of pc-sets as the graph whose set of vertices
is H and whose set of edges is the set

{(O, O′) | O ∈ H , O′ ∈ H , and OPm,nO′}.

A notable example is the “Cube Dance” graph, which is the parsimonious graph for the P1,0

relation (i.e. the voice-leading relation between chords resulting from the ascending or descend-
ing movement of a single pitch class by a semitone) on the set H of 28 elements containing
the 24 major and minor triads as well as the four augmented triads. This graph is reproduced
in Figure 5. One should note that this graph contains the subgraphs defined on the set H by the
neo-Riemannian operations L and P viewed as relations. Indeed, given O and O′ in H such that
O′ = L(O) or O′ = P(O), one can immediately verify by definition of these neo-Riemannian
operations that we have OP1,0O′. This subgraph is called “HexaCycles” by Douthett and Stein-
bach. The “Cube Dance” adds to “HexaCycles” the possible relations between the augmented
triads and the hexatonic cycles, which, as commented by Douthett and Steinbach, “serve as
the couplings between hexatonic cycles and function nicely as a way of modulating between
hexatonic sets.”

Douthett and Steinbach also introduced the “Weitzmann’s Waltz” graph, which corresponds
to the parsimonious graph for the P2,0 relation (i.e. the voice-leading relation between chords
resulting from the ascending or descending movement of two pitch classes by a semitone) on the
set H of 28 elements containing the 24 major and minor triads as well as the four augmented
triads. This graph is reproduced in Figure 6.

Whereas relations can be described as graphs, which can then be used for musical applications,
transformational analysis using relations is however trickier to define than in the case of groups
and group actions. In the framework of Lewin, the image of a given x by the group action of an
element g of a group G is determined unambiguously. Hence, one can speak about “applying the
operation g to the musical element x,” or about “the image of the musical element x under the
operation g.” Assume instead that, given a relation R between two sets X and Y and an element
x of X, there exist multiple y ’s in Y such that we have xRy. How then can one define “the image
of the musical element x under the relation R”? This question motivates the use of the more
general framework of relational PK-nets, which we define in the next section.
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Figure 5. Douthett and Steinbach’s “Cube Dance” graph as the parsimonious graph for the P1,0 relation on the set of
the 24 major and minor triads and the four augmented triads (Douthett and Steinbach 1998, page 254, Figure 9). The
subscripts M, m, and aug refer to major, minor, and augmented triads, respectively.

Figure 6. Douthett and Steinbach’s “Weitzmann’s Waltz” graph as the parsimonious graph for the P2,0 relation on the
set of the 24 major and minor triads and the four augmented triads (Douthett and Steinbach 1998, page 260, Figure 12).

2. Defining relational PK-nets

Before introducing the definition of relational PK-nets, we recall basic facts about relations and
the associated category Rel.

2.1. The 2-category Rel

We first recall some basic definitions about relations.

Definition 2.1 Let X and Y be two sets. A binary relation R between X and Y is a subset of the
cartesian product X × Y . We say that y ∈ Y is related to x ∈ X by R, which is notated as xRy, if
(x, y) ∈ R.
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Definition 2.2 Let R be a relation between two sets X and Y. We say that R is left-total if, for
each x ∈ X , there exists at least one y ∈ Y such that we have xRy.

Definition 2.3 Let X and Y be two sets, and R and R′ be two relations between them. The
relation R is said to be included in R′ if xRy implies xR′y, for all pairs (x, y) ∈ X × Y .

Relations can be composed according to the definition below.

Definition 2.4 Let X, Y, and Z be sets, R a relation between X and Y, and R′ be a relation
between Y and Z. The composition of R′ and R is the relation R′′ = R′ ◦ R defined by the
pairs (x, z) with x ∈ X and z ∈ Z such that there exists at least one y ∈ Y with xRy and yR′z.

Sets and binary relations between them form a 2-category Rel defined as follows.

Definition 2.5 The 2-category Rel is the category which has sets as objects, binary relations as
1-morphisms between them, and inclusion of relations as 2-morphisms between relations.

Notice that the definition of relations includes the special case of functions between sets: if R
is a relation between two sets X and Y, then R is a function if, given an element x ∈ X , there
exists exactly one y ∈ Y such that we have xRy. As a consequence, the category Sets of sets and
functions between them is a subcategory of Rel. Notice also that the definition of relations also
includes the case of partial functions between sets: if R is a relation between two sets X and Y,
it may be possible that, given an element x ∈ X , there exists no y ∈ Y such that we have xRy.
Hence, the category Par of sets and partial functions between them is also a subcategory of Rel.

Since Rel is a 2-category, the notion of a lax functor from a 1-category to Rel should be
recalled to account for the possible 2-morphisms between relations. In its generality, a lax func-
tor has a comparison natural 2-cell for identity morphisms and a comparison natural 2-cell for
compositions, and these comparison natural 2-cells are required to satisfy three coherence dia-
grams. Since there is at most one 2-cell between any two morphisms in Rel, all diagrams of
2-cells in Rel commute. It follows that the definition of lax functor into Rel can be simplified,
since the requirements on the coherence diagrams are automatically satisfied. Moreover, all the
lax functors we consider in this paper strictly preserve identities, so we are interested in normal
lax functors. The notion of a normal lax functor from a 1-category to Rel can thus be defined
more precisely as follows.

Definition 2.6 Let C be a 1-category. A normal lax functor F from C to Rel is the data of a map

• which sends each object X of C to an object F(X ) of Rel, and the identity morphism idX of X
to the identity morphism idF(X ) of F(X ), and

• which sends each morphism f : X → Y of C to a relation F( f ) : F(X ) → F(Y ) of Rel, such
that for each pair ( f , g) of composable morphisms f : X → Y and g : Y → Z the image
relation F(g)F( f ) is included in F(g f ).

Remark 2.7 All the examples of lax functors considered in this paper are normal, so in all of
the following, we use the expression “lax functor” to mean “normal lax functor.”

A lax functor will be called a 1-functor (coinciding with the usual notion of functor between
1-categories) when F(g)F( f ) = F(g f ).

Given two lax functors F and G to Rel, the notion of a lax natural transformation η between F
and G should be recalled to account similarly for the possible 2-morphisms between lax functors.
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Since the necessary coherence diagrams are automatically satisfied in Rel, this notion is defined
as follows.

Definition 2.8 Let C be a 1-category, and let F and G be two lax functors from C to Rel. A lax
natural transformation η between F and G is the data of a collection of relations {ηX : F(X ) →
G(X )} for all objects X of C, such that, for any morphism f : X → Y , the relation ηY F( f ) is
included in the relation G( f )ηX .

Finally, there exists a notion of inclusion of lax natural transformations between functors going
to Rel, which we define precisely below.

Definition 2.9 Let C be a 1-category, let F and G be two lax functors from C to Rel, and let η

and η′ be two lax natural transformations between F and G. We say that η is included in η′ if, for
any object X of C, the component ηX is included in the component η′

X .

The required equality axiom of a modification in the sense of 2-category theory is again
automatically satisfied because of the specific structure of Rel.

2.2. Relational PK-nets

With the previous definitions in mind, we now give the formal definition of a relational PK-net.

Definition 2.10 Let C be a small 1-category, and S a lax functor from C to the category Rel. Let
! be a small 1-category and R a lax functor from ! to Rel with non-empty values. A relational
PK-net of form R and of support S is a 4-tuple (R, S, F, φ), in which F is a functor from ! to
C, and φ is a lax natural transformation from R to SF, such that, for any object X of !, the
component φX is left-total.

A relational PK-net can be represented by a diagram similar to the one represented in Figure 2,
with Sets replaced by Rel. The definition given above is almost similar to that of a PK-net in Sets,
but the specifics of the 2-category Rel impose slight adjustments. The first one is the requirement
that the functor R shall be a lax functor to Rel instead of a 1-functor. To see why this is the case,
let X, Y, and Z be objects of !, and let f : X → Y , g : Y → Z, and h : X → Z be morphisms
between them, with h = g f. Relations are more general than functions: given the relation R( f )
between the sets R(X ) and R(Y), it is possible that, for a given element x ∈ R(X ) there exist
multiple elements y ∈ R(Y) such that we have xR( f )y, or even none at all. To be consistent, we
require that, given x ∈ R(X ) and z ∈ R(Z), we have that xR(g) ◦ R( f )z implies xR(h)z. However,
we do not require the strict equality of relations, as it gives more flexibility over the possible
relations with the elements of R(Y). The first example below will clarify this notion in the case
of the analysis of sets of varying cardinalities, in particular for triads and seventh chords. Note
that the same logic requires that S shall be a lax functor to Rel as well.

The second adjustment corresponds to the requirement that φ shall be a lax natural transfor-
mation from R to SF instead of an ordinary one. Let us recall the role of the functor S and the
natural tranformation φ in the case of PK-nets in Sets. The lax functor S defines the context of
the analysis: for any objects e and e′ of C and a morphism f : e → e′ between them, the sets
S(e) and S(e′) represent all the musical entities of interest and the function S( f ) represents a
transformation between them. Given a set of unnamed musical objects R(X ) (with X being an
object of the category !), the component φX of the natural transformation φ is a function which
“names” these objects by their images in SF(X ). In the case of relational PK-nets, since S( f ) is
a relation instead of a function, it is possible that an element of S(e) may be related to more than
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one element of S(e′), or even none. However, the relations between the actual musical objects
under study in the images of the lax functor R may not cover the range of possibilities offered by
the relations in the image of SF. Thus, we use a lax natural transformation φ instead of an ordi-
nary one, such that the images by φ of the relations given through R be included in those given
through SF. Informally speaking, the lax natural transformation φ “selects” a restricted range of
related elements among the possibilities given by the functor SF. In addition, we require that each
component of φ be left-total, so that all musical objects are “named” in the images of the functor
SF. All the constitutive elements of a relational PK-net (R, S, Fφ) are summed-up in the diagram
of Figure 7. In addition, various examples in Section 3 of this paper will clarify this notion.

Figure 7. Diagram showing the constitutive elements of a simple relational PK-net (R, S, F, φ).

We now give two simple examples to illustrate the advantages of relational PK-nets. The first
example deals with sets of varying cardinalities.

Example 2.11 Let C be the T /I group, considered as a single-object category, and consider its
natural action on the set Z12 of the twelve pitch classes (with the usual semitone encoding),
which defines a functor S : T/I → Rel. Let ! be the category with three objects X, Y, and Z
and precisely three morphisms f : X → Y , g : Y → Z, and h : X → Z, with h = gf. Consider the
functor F : ! → T/I which sends f to I3, g to I5, and h to T2.
Consider now a lax functor R : ! → Rel such that we have

• R(X ) = {x1, x2, x3, x4}, R(Y) = {y1, y2, y3}, and R(Z) = {z1, z2, z3, z4}, and
• the relation R( f ) is such that xiR( f )yi, for 1 ≤ i ≤ 3, the relation R(g) is such that yiR(g)zi,

for 1 ≤ i ≤ 3, and the relation R(h) is such that xiR(h)zi, for 1 ≤ i ≤ 4.

Consider the left-total lax natural transformation φ such that

• φX (x1) = C, φX (x2) = E, φX (x3) = G, φX (x4) = B, and
• φY (y1) = E♭, φY (y2) = B, φY (y3) = G♯, and
• φZ(z1) = D, φZ(z2) = F♯, φZ(z3) = A, φZ(z4) = C.

Then (R, S, F, φ) is a relational PK-net of form R and support S which describes the T2 trans-
position of the dominant seventh C7 chord to the dominant seventh D7 chord and the successive
I3 and I5 inversions of its underlying C major triad. A simplified representation of this relational
PK-net is given in Figure 8.
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Figure 8. Simplified representation of the relational PK-net (R, S, F, φ) of Example 2.11 which describes the T2 trans-
position of the dominant seventh C7 chord to the dominant seventh D7 chord and the successive I3 and I5 inversions of
its underlying C major triad.

This simple example is of particular interest as it shows the advantage of relational PK-nets
over the usual PK-nets in Sets to describe transformations between sets of decreasing cardinali-
ties. Here, the relation R( f ) is a partial function from R(X ) to R(Y) which “forgets” the element
x4, allowing us to describe the transformation of the major triad on which the initial seventh
chord is built. The requirement that R be a lax functor appears clearly: the composite relation
R(g) ◦ R( f ) only relates the first three elements x1, x2, and x3 of R(X ) to the first three ele-
ments z1, z2, and z3 of R(Z) (i.e. the underlying major triads), whereas the relation R(h) = R(g f )
relates all four elements, i.e. it describes the full transformation of the seventh chord by the T2

transposition. We thus require that the relation R(g) ◦ R( f ) be included in R(h).
The second example shows how relational PK-nets can model the split and fuse transforma-

tions of (Callender 1998).

Example 2.12 Figure 9(a) shows the essential voice leading from the right hand of the first bar
of Scriabin, op. 65 no. 3, reducing the involved pitch components to two distinct sets {B♭, F, E♭}
and {A, B, E}. Callender (1998) proposes a possible voice-leading relation between them through
the simultaneous splitting of E into E♭ and F and the fusing of A and B into B♭. This relation is
illustrated in Figure 9(b). We can model this voice-leading relation by the following relational
PK-net.

Let C = M be the monoid, considered as a single-object category, with presentation

M = ⟨r | r3 = r⟩.

Let S be the functor from C to Rel such that

• the image of the single object of M by S is the set Z12 of the twelve pitch classes, and
• the image of the generator r of M by S is the symmetric relation defined by the subset

S(r) = {(E, E♭), (E♭, E), (E, F), (F, E), (B, A), (A, B), (B♭, B), (B, B♭)}

of Z12 × Z12.

Let ! be the category with two objects X, Y, and precisely four non-identity morphisms
f : X → Y , g : Y → X , g f : X → X , and fg : Y → Y . Consider the functor F : ! → M which
sends both f and g to r.

Consider now a lax functor R : ! → Rel such that we have

• R(X ) = {x1, x2, x3}, R(Y) = {y1, y2, y3}, and
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Figure 9. (a), (b) The right hand of the first bar of Scriabin, op. 65 no. 3, wherein the involved pitch components have
been reduced as two distinct sets {B♭, F, E♭} and {A, B, E}, and a possible voice-leading relation by simultaneous splitting
and fusing of the individual pitch classes (Callender 1998, page 224, Figure 5). (c) Diagram showing the constitutive
elements of the relational PK-net (R, S, F, φ) of Example 2.12 which describes how the set {B♭, F, E♭} is related to the
set {A, B, E} by the simultaneous splitting of E and the fusing of A and B.

• the relation R( f ) is such that x1R( f )y1, x2R( f )y1, x3R( f )y2, x3R( f )y3, and
• the relation R(g) is such that y1R(g)x1, y1R(g)x2, y2R(g)x3, y3R(g)x3.

Consider the left-total lax natural transformation φ such that

• φX (x1) = A, φX (x2) = B, φX (x3) = E, and
• φY (y1) = B♭, φY (y2) = F, φY (y3) = E♭.

Then (R, S, F, φ) is a relational PK-net of form R and support S which describes how the set
{B♭, F, E♭} is related to the set {A, B, E} by the simultaneous splitting of E and the fusing of A
and B. This relational PK-net is represented in Figure 9(c).

Relational PK-nets of form R can be transformed by PK-homographies, which are defined as
follows.

Definition 2.13 A PK-homography (N , ν) : K → K ′ from a relational PK-net K = (R, S, F, φ)

to a second relational PK-net K ′ = (R, S′, F ′, φ′) consists of a functor N : C → C′ and a left-
total lax natural transformation ν : SF → S′F ′ such that F ′ = NF and the composite lax natural
transformation ν ◦ φ is included in φ′. A PK-homography is called a PK-isography if N is an
isomorphism and ν is an equivalence.
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There exists a notion of inclusion of PK-homographies, defined as follows.

Definition 2.14 Let (N , ν) : K → K ′ and (N ′, ν ′) : K → K ′ be PK-homographies from a rela-
tional PK-net K = (R, S, F, φ) to a second relational PK-net K ′ = (R, S′, F ′, φ′). We say that
(N , ν) is included in (N ′, ν ′) if ν is included in ν ′.

For a given lax functor R : ! → Rel, relational PK-nets with fixed functor R form a 2-category
RelPKNR, which is defined as follows.

Definition 2.15 For a given lax functor R : ! → Rel, the 2-category RelPKNR has the rela-
tional PK-nets of form R as objects, PK-homographies (N , ν) between them as 1-morphisms,
and inclusion of PK-homographies as 2-morphisms.

3. Relational PK-nets in monoids of parsimonious relations

In this section, we revisit the work of Douthett and Steinbach about parsimonious relations, and
show how we can define proper relational PK-nets for transformational music analysis on major,
minor, and augmented triads. We begin by defining a new monoid of parsimonious relations
originating from the “Cube Dance”.

3.1. The monoid MUPL

As discussed in Section 1.3, the “Cube Dance” graph represented in Figure 5 results from the
HexaCycles graph to which the vertices and edges corresponding to the four augmented triads
and their P1,0 relation to major and minor triads have been added. The HexaCycles graph itself
results from the neo-Riemannian operations L and P viewed as relations on the set of the 24
major and minor triads. We formalize the construction of the “Cube Dance” graph by defining
three different relations on the 28-elements set of the 24 major and minor triads and the four
augmented triads. We adopt here the usual semitone encoding of pitch classes with C = 0, and
we notate a major chord by nM and a minor chord by nm, where n is the root pitch class of
the chord, with 0 ≤ n ≤ 11. For the four augmented triads, we adopt the following notation:
A♭aug = 0aug, Faug = 1aug, Daug = 2aug, and Baug = 3aug. All arithmetic operations are understood
modulo 12, unless otherwise indicated.

Definition 3.1 Let H be the set of the 24 major and minor triads and the four augmented
triads, i.e. H = {nM | 0 ≤ n ≤ 11} ∪ {nm | 0 ≤ n ≤ 11} ∪ {naug | 0 ≤ n ≤ 3}. We define the
following relations on H.

• The relation P is the symmetric relation such that we have nMPnm for 0 ≤ n ≤ 11, and
naugPnaug for 0 ≤ n ≤ 3. This is the relational analogue of the neo-Riemannian P opera-
tion. The relation P defined here should not be confused with Douthett and Steinbach’s Pm,n

relations.
• The relation L is the symmetric relation such that we have nML(n + 4)m for 0 ≤ n ≤ 11, and

naugLnaug for 0 ≤ n ≤ 3. This is the relational analogue of the neo-Riemannian L operation.
• The relation U is the symmetric relation such that we have nMU(n (mod 4))aug for 0 ≤ n ≤

11, and nmU((n + 3) (mod 4))aug for 0 ≤ n ≤ 11.

The P and L relations come from the neo-Riemannian P and L functions. The relation U is intro-
duced to couple the hexatonic cycles, by relating any augmented chord with the major or minor
chords sharing two tones in common. As such, the relation U is genuinely not a function since
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there are always three major chords and three minor chords related by U to a given augmented
chord.

We are now interested in the monoid MUPL generated by the relations U , P , and L under the
composition of relations introduced in Section 2.1. The structure of this monoid can be deter-
mined by hand through an exhaustive enumeration, or more simply with any computational
algebra software, such as GAP (2016). The following proposition gives a presentation of the
monoid MUPL.

Proposition 3.2 The monoid MUPL generated by the relations U , P , and L has the following
presentation:

MUPL = ⟨U ,P ,L | P2 = L2 = e, LPL = PLP , U3 = U ,

UP = UL, PU = LU , U2PU2 = PU2PU2P ,

(UP)2U2 = P(UP)2U2P , U2(PU)2 = PU2(PU)2P⟩.

The monoid MUPL contains 40 elements.

The Cayley graph of this monoid is represented in Figure 10. The only invertible elements
of the monoid MUPL are the set {e,L,P ,LP ,PL,LPL}, which forms a subgroup in MUPL
isomorphic to the dihedral group D6 generated by the neo-Riemannian operations P and L.

In view of building PK-isographies between relational PK-nets on MUPL, the next proposition
establishes the structure of the automorphism group of the monoid MUPL.

Proposition 3.3 The automorphism group of the monoid MUPL is isomorphic to the group
D6 × Z2.

Proof Any automorphism N of the monoid MUPL is entirely determined by its image of gener-
ators. Since L and P are the only invertible generators, their images belong to the D6 subgroup
{e,L,P ,LP ,PL,LPL} and induce an isomorphism of this subgroup. From known results about
dihedral groups, we have Aut(D6) ≃ D6, and the images are given by N(P) = (PL)m+nL, and
N(L) = (PL)nL, with m ∈ {−1, 1} and n ∈ {0, 1, 2}.

This defines a homomorphism ( from Aut(MUPL) to D6 which associates to any automor-
phism N of MUPL the automorphism of D6 induced by the images of L and P .

The kernel of ( consists of the subgroup of Aut(MUPL) formed by the automorphisms N
such that N(L) = L and N(P) = P . It is thus uniquely determined by the possible images of
the remaining generator U by N. An exhaustive computer search shows that only N(U) = U and
N(U) = PUP yield valid automorphisms, i.e. N(U) = PkUPk , with k ∈ {0, 1} considered as the
additive cyclic group Z2. Thus Aut(MUPL) is an extension of Z2 by D6, and any automorphism
N is uniquely determined by the pair (g, k) where g is an element of Aut(D6), and k is an element
of Z2.

Let N1 = (g1, k1) and N2 = (g2, k2) be two automorphisms of the MUPL monoid and consider
N = N2N1 = (g, k). From the discussion above, we have g = g2g1. The image of the generator
U by N is

N(U) = N2(Pk1UPk1),

which is equal to
N(U) = ((PL)m2+n2L)k1Pk2UPk2((PL)m2+n2L)k1 .

Since we have PU = LU and UP = UL, all the terms P in this last equation can be replaced by
L, and since L2 = e, this yields

N(U) = Lk1+k2ULk1+k2 .
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Figure 10. The Cayley graph of the monoid MUPL generated by the relations U , P , and L. The relations L and P are
involutions, and are represented as arrowless dashed and dotted lines.

Hence, we have N = N2N1 = (g, k) = (g2g1, k2 + k1), thus proving that Aut(MUPL) is isomor-
phic to D6 × Z2. !

We now illustrate the possibilities offered by the MUPL monoid for transformational analysis
using relational PK-nets. Figure 11(a) shows a reduction of the opening chord progression of
the song Take a Bow by the English rock band Muse. This progression proceeds by semitone
changes from a major chord to an augmented chord to a minor chord. At this point, the minor
chord evolves to a major chord on the same root, i.e. the two chords are related by the neo-
Riemannian operation P. The same process is then applied five times till the middle of the song
(only the first twelve chords are represented in Figure 11(a)).

A first transformational analysis of this progression can be realized as follows. We focus here
on the first four chords, since the progression proceeds further identically. The data of the monoid
MUPL and the relations over H of its elements defines a functor S : MUPL → Rel. Let ! be the
poset of the ordinal number 4 (whose objects are labelled Xi, with 0 ≤ i ≤ 3), and let R be the
functor from ! to Rel which sends the objects Xi of ! to singletons {xi}. Let F be the functor
from ! to MUPL which sends the non-trivial morphisms f0,1 : X0 → X1 and f1,2 : X1 → X2 of !

to U in MUPL, and the non-trivial morphism f2,3 : X2 → X3 of ! to P in MUPL. Finally, let φ be
the left-total lax natural transformation which sends x0 to DM , x1 to Daug, x2 to Gm, and x3 to GM .
Then (R, S, F, φ) is a relational PK-net describing the opening progression of Figure 11(a). A
simplified representation of this relational PK-net (and its extension to the remaining chords) is
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Figure 11. (a) Reduction of the opening progression of Take a Bow from Muse (the first twelve chords are represented
here). (b) First transformational analysis in the MUPL monoid showing the sequential regularity of the progression. (c)
Second transformational analysis in the MUPL monoid showing the successive transformations of the initial three-chord
cell by the homography (N = Id, Fν) with ν(nM ) = (n + 5)M , ν(nm) = (n + 5)m, and ν(naug) = (n + 1 (mod 4))aug.

shown in Figure 11(b), by directly labelling the arrows between the chords with the elements of
MUPL. Given two chords on the left and right side of a labelled arrow between them, one should
remain aware that this does not mean that the chord on the right is the unique image of the chord
by the given element of MUPL. From a relational point of view, as discussed in Section 2.2, one
should consider instead the chord on the right to be related to the one on the left by the element of
MUPL, among the possibly larger range of possibilities given by the functor S : MUPL → Rel.
For example, given the chord Daug, there exist six chords y (namely DM , F♯M , B♭M , E♭m, Bm,
and Gm) such that we have DaugUy. Here, the left-total lax natural transformation φ allows us to
select precisely one chord, Gm, to explain the given chord progression.

This relational PK-net shows the regularity of the chord progression, but does not clearly
evidence the progression by fourths of the initial three-chord cell. We propose now a second
transformational analysis based on a specific PK-net isography and its iterated application on a
relational PK-net describing this initial cell.

Let ! be the poset of the ordinal number 3 (whose objects are labelled Xi, with 0 ≤ i ≤ 2),
and let R be the functor from ! to Rel which sends the objects Xi of ! to singletons {xi}. Let
F be the functor from ! to MUPL which sends the non-trivial morphisms f0,1 : X0 → X1 and
f1,2 : X1 → X2 of ! to U in MUPL. Finally, let φ be the left-total lax natural transformation which
sends x0 to DM , x1 to Daug, and x2 to Gm. Then (R, S, F, φ) is a relational PK-net describing the
initial three-chord cell of Figure 11(a). Consider now the identity functor N = Id on MUPL, along
with the left-total lax natural transformation ν : S → S defined on the set of the major, minor, and
augmented triads by ν(nM ) = (n + 5)M , ν(nm) = (n + 5)m, and ν(naug) = (n + 1 (mod 4))aug.
By applying the PK-isography (N , Fν) on (R, S, F, φ), one obtains a second relational PK-net
(R, S, F, φ′) such that φ′ sends x0 to GM , x1 to Baug, and x2 to Cm, thus describing the progression
by fourths of the initial cell. The successive chords are given by the iterated application of the
same PK-isography (N , Fν), as shown in Figure 11(c).
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Figure 12. A graphical illustration on Douthett and Steinbach’s “Cube Dance” graph of the identity S7 = S5 in the
monoid MS . The chord AM is related to E♭m by the relation S5, which can be viewed as the result of taking two distinct
paths of length five or seven in the graph.

3.2. The monoids MS , MT , and MST

In the previous monoid of parsimonious relations, we distinguished the subrelations U , P , and
L included in the P1,0 relation in order to differentiate the contributions of the neo-Riemannian
operations P and L, and the relation U which bridges the hexatonic system via the augmented
triads. However, we could also consider Douthett and Steinbach’s P1,0 relation as a whole, to
focus on the parsimonious voice leading between chords by any single semitone displacement.

For clarity of notation, we rename the P1,0 relation to S and we recall its definition on the set
of major, minor, and augmented triads.

Definition 3.4 Let H be the set of the 24 major and minor triads and the 4 augmented triads,
i.e. H = {nM | 0 ≤ n ≤ 11} ∪ {nm | 0 ≤ n ≤ 11} ∪ {naug | 0 ≤ n ≤ 3}. The S relation on H is
defined as the symmetric relation such that we have nMSnm, nMS(n + 4)m, nMS(n (mod 4))aug,
and nmS((n + 3) (mod 4))aug for 0 ≤ n ≤ 11.

We are now interested in the monoid generated by the relation S, under the composition of
relations introduced in Section 2.1. The structure of this monoid can easily be determined by
hand or with a computer, and is given in the following proposition.

Proposition 3.5 The monoid MS generated by the relation S has the following presentation:

MS = ⟨S | S7 = S5⟩.

The identity S7 = S5 can be proved rigorously by writing down explicitly the subset of H × H
to which it corresponds. Alternatively, this identity can be directly visualized on Douthett and
Steinbach’s “Cube Dance” graph, as shown in Figure 12. As a quick application of this monoid,
consider the following example. The data of the monoid MS and the relations over H of its
elements define a functor S : MS → Rel. Let ! be the poset of the ordinal number 2, i.e. the
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Figure 13. A possible path for the progression from A major to F♯ major by successive semitone displacement. The
labels above the arrows indicate that the chord on the right is related to the chord on the left by the S relation. The
corresponding semitone displacements are indicated by the curved violet arrows.

category with only two objects X and Y and only one non-trivial morphism f : X → Y between
them, and let R be the functor from ! to Rel which sends the objects X and Y of ! to the sin-
gletons {x} and {y}. Let C be the MP1,0 -monoid with the above-defined functor S : MS → Rel.
Finally, let φ be the left-total lax natural transformation which sends x to AM , and y to F♯M . We
are interested in the possible functors F such that (R, S, F, φ) is a relational PK-net describing
the relation between AM and F♯M . A rapid verification through the elements of MS shows that
only F( f ) = S3 and F( f ) = S5 yield valid choices for F. Observe that these relations corre-
spond to the first two shortest distances between AM and F♯M in the “Cube Dance” of Figure 5.
A possible path for the progression from AM to F♯M by three successive semitone displace-
ments is given in Figure 13, which shows the successive relations AMSFaug, FaugSB♭m, and
B♭mSF♯m.

As introduced in Section 1.3, Douthett and Steinbach also studied the parsimonious graph
induced by the P2,0 relation on the set of major, minor, and augmented triads (the “Weitzmann’s
Waltz” graph shown in Figure 6). The P2,0 relation relates two pitch-class sets if one can be
obtained from the other by the displacement of two pitch classes by a semitone each, which
includes both the case of the parallel displacement of these pitch classes, as well as their contrary
movement.

As before, we rename the P2,0 relation as T for clarity of notation, and we recall its specific
definition on the set of major, minor, and augmented triads.

Definition 3.6 Let H be the set of the 24 major and minor triads and the four augmented triads,
i.e. H = {nM | 0 ≤ n ≤ 11} ∪ {nm | 0 ≤ n ≤ 11} ∪ {naug | 0 ≤ n ≤ 3}. The T relation over H
is defined as the symmetric relation such that we have

nMT (n + 4)M

nMT (n + 8)M

nmT (n + 4)m

nmT (n + 8)m

,
nMT (n + 1)m

nMT (n + 5)m
, and

nMT ((n + 3) (mod 4))aug

nmT (n (mod 4))aug
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for 0 ≤ n ≤ 11.

As before, the structure of the monoid MT generated by the relation T can easily be determined,
and is given in the following proposition.

Proposition 3.7 The monoid MT generated by the relation T has the following presentation:

MT = ⟨T | T 4 = T 3⟩.

Transformational analysis using relational PK-nets can be performed in the context of the
monoid MT , but it should be noticed that given two chords x and y there may not always exist a
relation R in MT such that xRy. Therefore, it may be interesting to combine both the S and the
T relations in order to describe the relations between chords by a series of one or two pitch-class
movements by semitones. We are thus interested in the structure of the monoid MST generated
by the relations S and T , which is given in the following proposition.

Figure 14. The Cayley graph of the monoid generated by the relations S and T .

Figure 15. Transformational analysis of the progression A major to F♯ major in the context of the MST monoid. The
semitone changes are indicated by the violet arrows.
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Proposition 3.8 The monoid MST generated by the relations S and T has the following
presentation:

MST = ⟨S, T | T S = ST , S3 = ST , T 4 = T 3, T S2 = T 2, ST 3 = ST 2⟩.

The monoid MST contains eight elements.

The Cayley graph of this monoid is represented in Figure 14. As a quick application of this
monoid, consider the aforementioned example for the relation between AM and F♯M and let
C be the new monoid MST . An enumeration of the elements of this monoid shows that only
F( f ) = T S and F( f ) = ST 2 yield valid choices for F. A possible path for the progression
from AM to F♯M is shown in Figure 15, which shows the successive relations AMSFaug and
FaugT F♯m.

4. Conclusions

We have presented in this work a new framework, called relational PK-nets, in which we con-
sider diagrams in Rel rather than Sets as an extension of our previous work on PK-nets. We
have shown how relational PK-nets capture both the group-theoretical approach and the rela-
tional approach of transformational music theory. In particular, we have revisited Douthett and
Steinbach’s parsimonious relations Pm,n by studying the structure of monoids based on the P1,0

or P2,0 relations (or subrelations of these), and their corresponding functors to Rel relating major,
minor, and augmented triads. Further perspectives of relational PK-nets include their integration
for computational music theory, providing a way for the systematic analysis of music scores.
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