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Geometric models in music

% Circular geometric-musical models:
> musical clock
> circle of fifths
< Examples of musical graphs:
> Tonnetz (Fig. 1), note-based graph or 2-dimensional simplicial
complex in which each 0-simplex represents a note and each
2-simplex represents a major or minor triad
> Chicken-wire Torus (Fig. 2), chord-based graph whose
vertices are major and minor triads
> Generalized Chicken-wire Torus for seventh chords (Fig. 3),
chord-based graph whose vertices are sevenths.
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Fig. 1: Tonnetz Fig. 2: Chicken-wire Torus
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Fig. 3: Generalized Chicken-wire Torus for seventh chords

Why geometry in music?

¢ It is an intuitive tool to visualize and describe sequences of chords,
In particular the property of stepwise motion in parsimonious voice
leading (interaction among the different melodic lines creating the
harmony).

* It provides music-analytical tools for compositional applications.
Example: Hamiltonian cycles in chord-based graphs.
Example: geometric transformations can modify musical sequences
creating new musical ideas.
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Introduction and aim
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Pavia, Italy,

Despite a long historical relationship between mathematics and music, the research in Mathematical Music

Theory is very recent.

Our aim is to give an overview on some main topics based on geometry and algebra, and some applications.

pjcal experiences and results

o

We have proposed some pedagogical mathemusical experiences via HexaChord in two Festival of Science,

one in France (Strasbourg) and one in ltaly (Cagliari).

HexaChord is a computer aided-music analysis environment developed by Louis Bigo, in which different

geometric-musical models are integrated.
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 Participants: children (different ages) o
 Materials:
> computer with HexaChord
> plano keyboard connected to the pc X
> wooden musical-clock and Tonnetz.
% Observations and results:
> children played more with the wooden <&
models, more familiar to already known
games
> when a guide explained the features of
HexaChord, the children showed interest
and they understood very quickly its
behavior
> during the absence of a guide to the
piano and the computer, the younger
children did not understand how the
musical sequences were displayed, then
they moved on the geometric wooden
models

Participants: two classes of students

belonging to the last year of a high school

with a musical program.

Materials:

> computer with HexaChord

> video projector.

Observations and results:

> thanks to their musical background,
they easily understood the features of
HexaChord and its utility for music
analysis

> their reactions to computational
approaches to music analysis based on
geometric models were very positive

> great surprise in discovering that
mathematics can also be a useful tool
for learning music

From the score to the Tonnetz

Algebraic tools

Musical graphs are related to musical transformations of the
transformational theory, a branch of Mathematical Music Theory based
on the use of algebraic structures to define musical transformations.

% The edges in the Chicken-wire Torus and the “edge-flips” in the
Tonnetz correspond to the neo-Riemannian transformations P, L
and R. These 3 transformations describe the parsimonious voice
leading between major and minor triads.

Theorem: the PLR-group generated by P, L and R acts on
the set of the 24 major and minor triads generating a
group isomorphic to the dihedral group D_, of order 24.

< We have extended the studies on triads to seventh chords. The
edges of the generalized Chicken-wire Torus for sevenths
correspond to the 17 parsimonious operations on dominant, minor,
half-diminished, major and diminished sevenths. We have
generalized the PLR-group for these types of sevenths.

Theorem: Let PLRQ be the group generated by the 17
most parsimonious transformations acting on the set of
dominant, minor, half-diminished, major and diminished

sevenths. Then PLRQ ~ S5 x Z3,
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