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Abstract

Mathematical morphology is a branch of mathematics that is developing mostly
in response to problems related to image processing. Being first applied to binary
images and then generalized to grayscale images and to other mathematical frame-
works, this theory provides methods for filtering, segmentation and pattern recog-
nition. Due to its relatively recent development, there are no direct applications to
music at this time. The objective of this report is to suggest axes of application from
mathematical morphology to music. In a first place, by representing the music as a
piano roll image, it will be possible to directly apply the morphological operators.
This makes it possible to isolate the melody, detect certain patterns or find the key.
In a second step, a new method of musical analysis, based on variations in musi-
cal pitch, will be developed to represent melodic patterns. Using this approach, it
is possible to obtain the self-similarity matrix based on pitch variations. Morpho-
logical operators are used to detect the main blocks of this matrix. By changing the
size of the filters, this makes it possible to obtain different degrees of filtration to get
information on the structure of the piece at different scales.

Keywords : Mathematical morphology · Music visualisation · Musical Structure
· Musical pattern detection · Musical contour · Self-similarity matrix

Résumé

La morphologie mathématique est un domaine des mathématiques qui se développe
en particulier grâce aux problèmes liés aux traitements d’images. D’abord appliquée
aux images binaires puis généralisée aux images à niveau de gris et à d’autres struc-
tures mathématiques, cette théorie fournit des méthodes de filtrage, de segmentation
ou encore de reconnaissance de formes. De par son développement assez récent,
il n’existe pas encore d’applications directes à la musique. Ce rapport a pour but
de proposer des axes d’applications de la morphologie mathématique à la musique.
Tout d’abord, en représentant la musique sous forme d’une image de type piano roll,
il sera possible d’appliquer directement les opérateurs morphologiques. Cela per-
met d’isoler la mélodie, de détecter certains motifs ou encore de trouver la tonalité.
Dans un second temps, une nouvelle méthode d’analyse musicale, basée sur les vari-
ations du pitch musical, sera développée pour représenter les motifs mélodiques.
Grâce à cette approche, il est possible d’obtenir la matrice d’autosimilarité basée
sur les variations du pitch. Les opérateurs morphologiques permettent de détecter
les principaux blocs de cette matrice. En changeant la taille des filtres, cela permet
d’obtenir différents degrés de filtrage pour avoir une information sur la structure du
morceau à différentes échelles.

Mots-clés : Morphologie Mathématique · Visualisation musicale · Structure mu-
sicale · Détection de motifs musicaux · Contour musical · Matrice d’autosimilarité



v

List of Symbols

Xc complement Xc = {x ∈ E | x /∈ X}

Xt translate Xt = {x + t|x ∈ X}

X̌ symmetrical X̌ = {−x|x ∈ X}

δS dilation δS(X) = X ⊕ S = {x + s|x ∈ X, s ∈ S}

εS erosion ϵS(X) = X ⊖ S = (Xc ⊕ Š)c

γS opening γS(X) = X ◦ S = δS ◦ ϵS(X)

ϕS closing ϕS(X) = X • S = ϵS ◦ δS(X)

ηS hit-or-miss ηS(X) = X ⊗ S = (X ⊖ S) ∩ (Xc ⊖ Sc)

τS top-hat τS(X) = X − γS(X)

γS1,...,Sn opening generalized γS1,...,Sn(X) = (X ◦ S1) ∪ ... ∪ (X ◦ Sn)





vii

Contents

Acknowledgements iii

Abstract iv

Introduction 1

1 Introduction to Mathematical Morphology 3
1.1 Mathematical Morphology on Sets . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Erosion and Dilation . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Opening and Closing . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Hit-or-Miss Transform . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.4 Other Possible Operations . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Mathematical Morphology on Functions . . . . . . . . . . . . . . . . . . 8

2 Mathematical Morphology on Sets Applied to Music 11
2.1 Applications to Symbolic Music . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Opening Operation in Order to Extract Data . . . . . . . . . . . . . . . 12

2.2.1 A First Application of an Opening Operation . . . . . . . . . . . 12
2.2.2 Opening with a More Relevant Structuring Element . . . . . . . 13

2.3 Hit-or-Miss Transform to Detect the Key . . . . . . . . . . . . . . . . . . 14
2.3.1 A First Approach to Detect the Key . . . . . . . . . . . . . . . . 14
2.3.2 A More Advanced Way to Detect the Key . . . . . . . . . . . . . 16
2.3.3 Representation in Relation to the Key . . . . . . . . . . . . . . . 17

3 A New Approach for Visualizing Musical Pitch Variations 19
3.1 Identify Melodic Patterns in a Melody . . . . . . . . . . . . . . . . . . . 19

3.1.1 Description of the Method for a Melody . . . . . . . . . . . . . . 19
3.1.2 Prelude of Bach in C major, BWV 846 . . . . . . . . . . . . . . . 20
3.1.3 Études of Chopin Op. 10 No. 1 . . . . . . . . . . . . . . . . . . . 21

3.2 A Matrix Representation to Generalize Melodic Patterns for a Chord
Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.1 Definition of the Transition Matrix between Two Chords . . . . 22
3.2.2 Prelude of Bach in C minor, BWV 847 . . . . . . . . . . . . . . . 23
3.2.3 Godowsky’s Arrangement Op. 10 No. 1 . . . . . . . . . . . . . . 24

3.3 Theoretical Analysis of Transition Matrices . . . . . . . . . . . . . . . . 26

4 Analysis of the Musical Structure based on Pitch Variations 29
4.1 Introduction to Music Structure Analysis with the Study of the Chord

Contour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Similarity Inside the Chord Contour . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Distance Between Two Transition Matrices . . . . . . . . . . . . 30
4.2.2 Self-Similarity Matrices Based on the Chord Contour . . . . . . 31



viii

4.3 Filtering of the Self-Similarity Matrix using Morphological Tools to
Determine the Structure of the Piece . . . . . . . . . . . . . . . . . . . . 32

4.4 Detection of Blocks Around the Antidiagonal of the Self-Similarity
Matrix at Several Levels of Filtering . . . . . . . . . . . . . . . . . . . . 34

Conclusion and Future Work 38

A Music Pieces Analysis with the Pitch Variations Method 39
A.1 Analysis of the First Gymnopédie . . . . . . . . . . . . . . . . . . . . . . 39
A.2 Analysis of the third movement of Moonlight Sonata . . . . . . . . . . 41



Contents 1

Introduction

After having spent the first half of the year between Ircam and Télécom Paris
as part of the ATIAM master’s program, I wanted to continue in this direction for
my research internship. As a result of my background as a mathematician at the
ENS, I worked on mathematical morphology in the Musical Representation team at
Ircam supervised by Carlos Agon and Isabelle Bloch for six months. It is within this
team that new ideas emerged to analyze and understand music with morphologi-
cal tools. This internship report aims to synthesize these different ideas and present
new methods of musical analysis related to mathematical morphology. Indeed, mor-
phology, of which Isabelle Bloch is a specialist, being a field of mathematics derived
from image processing that is in the process of development, it has not yet had any
direct application to music. Therefore, the main objective of this internship was to
understand how to apply morphological tools to music and what were the major
interests. It was therefore a continuous process of exploration with no concrete pur-
pose and no real previous work to build on.

To begin with, I studied the literature on mathematical morphology to properly
understand this theory. The knowledge that I consider essential is summarized and
illustrated in Chapter 1. Since morphology applies to images, my first idea, which is
the most intuitive, was to represent music as an image and then to apply morpholog-
ical operations directly to it. That is why in Chapter 2, I worked on piano rolls which
are a representation of music in the form of an image. I then noticed that thanks to
morphological operations, it is possible to isolate the melody from the chords, to
detect a particular melodic pattern or to extract the key. Results are satisfying but it
is not necessary to use morphology to obtain this. Thus, the second chapter aims to
propose a first approach to musical analysis with morphological tools.

After having achieved the first objective, I then decided to develop a new tech-
nique of musical analysis in order to identify melodic patterns. This technique is
based on the variation of the pitch during a song. The innovation proposed in Chap-
ter 3 is the generalization of this technique by moving from a melody to a chord se-
quence where the number of notes can change. For this purpose, I proposed to work
with matrices instead of numbers. Thanks to this generalization, melodic patterns
become richer and more complex and make it possible to characterize a musical
theme. By working on the self-similarity matrix, based on the variation of the pitch,
it is possible to detect the different melodic patterns during a piece. Thus, Chapter
4 explains how to use morphological filters to extract information from this matrix.
By gradually varying the filter size, it is possible to determine the structure of the
song and identify the different melodic patterns that will represent each theme.

To sum up, the first chapter introduces mathematical morphology, the second
presents a first direct application while the last two start from an original personal
idea developed throughout the internship in order to find melodic patterns.

Nota Bene : A YouTube channel illustrates the concepts discussed in this report.
This will allow you to listen to the different pieces of music that are present and to
listen to the transformations made with the morphological tools. The link is avail-
able by clicking here.

https://www.youtube.com/channel/UCEaah8MCyXGkoZvPB9ZkTmQ?disable_polymer=true
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Chapter 1

Introduction to Mathematical
Morphology

1.1 Mathematical Morphology on Sets

1.1.1 Erosion and Dilation

The morphological operations result from two basic operators: dilation and erosion.
Based on these two operations, it is possible to generate several other morphological
operations using compositions, unions, intersections, or complement of sets. Only
the useful notions are recalled here, and more details can be found in [1, 2, 3, 4, 5, 6].
Let E = Rn or Zn and X ⊆ E, before defining dilation and erosion, let us start by
reintroducing some notions:

• the complement of X is: Xc = {x ∈ E | x /∈ X}

• the translate of X by t ∈ E is: Xt = {x + t | x ∈ X}

• the symmetrical of X is: X̌ = {−x | x ∈ X}
Let S ∈ P(E) be a structuring element, the dilation δS and the erosion εS by S are
respectively defined as:

δS : P(E) −→ P(E)
X 7−→ X ⊕ S

εS : P(E) −→ P(E)
X 7−→ X ⊖ S

where the Minkowski addition ⊕ [7] and substraction ⊖ [8] are defined ∀X, S ∈ P(E):

X ⊕ S =
⋃
s∈S

Xs =
⋃

x∈X

Sx = {x + s | x ∈ X, s ∈ S} = {x ∈ E | Šx ∩ X ̸= ∅}

X ⊖ S =
⋂
s∈S

X−s = {t ∈ E|St ⊆ X}

To illustrate these concepts let X be represented by a hat, and the structuring element
S by a triangle (Figure 1.1). It is important to note that the structuring element is
defined with an origin. Indeed, the position of the origin will have a direct impact
on the Minkowski addition and will change the result of a dilation or an erosion. By
default, the origin of the structuring element is located at the center of it, however,
in the example chosen in Figure 1.1, the origin is located in the upper corner of
the structuring element. In addition, if and only if the origin is contained in the
structuring element, dilation extends the shapes of the set X, i.e. dilation is extensive,
while erosion reduces the form of X, erosion is anti-extensive. There is a link between
these two operations, they are dual by complementation, that is to say:

X ⊕ S = (Xc ⊖ Š)c X ⊖ S = (Xc ⊕ Š)c
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FIGURE 1.1: Example of a set X and a structuring element S.

To have an intuition of the shape obtained during a dilation when the origin is con-
tained in the structuring element, one must imagine that the origin of the triangle
will slide along the X border. The dilation will be the set of points where the triangle
can go. Therefore, the form can only expand. Figure 1.2a illustrates the transforma-
tion made by a dilation where the boundary of the dilated set is in black color. In
the same way, to visualize erosion, it is possible to use the duality by complemen-
tation. Thus, it is necessary to imagine making a dilation of the complementary of
X by the symmetrical of S. The origin still slides along the X border but the struc-
turing element is reversed and the boundary of the eroded set will be where the
triangle cannot go. The boundary of the erosion result is shown in black in Figure
1.2b. In both cases, the shape has changed and transformations are not just homo-
theties. To summarize the consequences of a dilation, it fills holes smaller than the

(A) Dilation of X by S (B) Erosion of X by S

FIGURE 1.2: Example of a dilation and an erosion of X by S.

structuring element, welds nearby shapes, fills narrow channels and widens shapes.
On the other hand, for an erosion: it eliminates connected components smaller than
the structuring element, widens holes and reduces the size of objects. Finally, if (and
only if) the origin is contained in the structuring element:

∀X, S ∈ P(E), εS(X) ⊆ X ⊆ δS(X)

Dilation and erosion are non-reversible operations. Moreover, they are not reverse
but dual operations. Thus, it is possible to represent these links between the two
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main operators on a graph as shown in figure 1.3.

X

Xc

δS(X) = X ⊕ S

ε Š(Xc) = Xc ⊖ Š

com
plem

ent

com
plem

ent

dilation by S

erosion by Š

FIGURE 1.3: Relation between dilation and erosion on a graph.

1.1.2 Opening and Closing

The other two fundamental operations result from composing the previous func-
tions. In fact, the opening γS is the composition of an erosion and a dilation. Further-
more, a closing ϕS is a dilation followed by an erosion.

γS : P(E) −→ P(E)
X 7−→ X ◦ S

ϕS : P(E) −→ P(E)
X 7−→ X • S

where for all X, S ∈ P(E):

X ◦ S = (X ⊖ S)⊕ S X • S = (X ⊕ S)⊖ S

It is easy to interpret the opening operation: it keeps the points of Sx for all points x
where the shape of S can be included within X. In other words, γS(X) is given by
the points of X which are covered by S when dragged inside the contours of X. In
the same way as previously, these operations are dual by complementation:

X • S = (Xc ◦ Š)c X ◦ S = (Xc • Š)c

This property allows us to understand the closing from the opening. In fact, closing
a set would be like adding points where Š cannot go, by remaining in the comple-
ment of X. It is important to note that the origin of the structuring element S no
longer matters for these two operations, only the shape of the structuring element
is important. Indeed, it slides inside X for opening or inside Xc for closing. While
for a dilation, it is the origin of S that thins along the X border, and for an erosion,
the origin of Š that slides along the Xc border. These operations are represented in
Figure 1.4 by using the same X and S as before. Thus, for the opening represented
in Figure 1.4a, the triangle which is the structuring element must remain within X,
the boundary of the opening is the black curve which is contained in X. For the
closing that is represented in Figure 1.4b, Š must remain in Xc and the boundary of
the closed set is also represented in black.

These two operations have important properties because they are idempotent, that
is to say:

γS ◦ γS = γS ϕS ◦ ϕS = ϕS
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(A) Opening of X by S (B) Closing of X by S

FIGURE 1.4: Example of an opening and a closing of X by S.

This property define a morphological filter, because it is necessary to apply an open-
ing or a closing only once. It is possible to interpret the consequences of an opening:
it smoothes the shapes, eliminates the connected components smaller than the struc-
turing element, does not (always) preserve the topology and reduces the object, γS
is anti-extensive. In the case of a closing, it fills the holes smaller than the structuring
element, does not (always) keep the topology, welds close shapes and enlarges the
object, ϕS is extensive. Moreover, the following inclusions are always true:

∀X, S ∈ P(E), γS(X) ⊆ X ⊆ ϕS(X)

Figure 1.5 graphically illustrates the link between the four operations we have just
defined. The idempotence of closing and opening is clearly visible by following the
arrows. As Figure 1.3 shows, the notion of complementation is generalized to our
new operations.

X

Xc

δS(X) ϕS(X)

γŠ(Xc)ε Š(Xc)

γS(δS(X))

ϕŠ(ε Š(Xc))

dilation

erosion

erosion

dilation

com
plem

ent

com
plem

ent

com
plem

ent

com
plem

ent

dilation erosion

erosion dilation

FIGURE 1.5: Graph illustrating the link between basic operations.

The four operations that were presented - dilation, erosion, opening and closing -
form the basis for possible transformations in mathematical morphology. It is pos-
sible to define many other operations such as the gradient or the Laplacian by com-
posing or adding these four basic operations.
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1.1.3 Hit-or-Miss Transform

The hit-or-miss transform, noted by η, uses two structuring elements: S1 the foreground
structuring element and S2 the background structuring element such as S1 ∩ S2 = ∅.
Thus, ηS1,S2(X) contains all the points for which S1 is contained in X and S2 is con-
tained in Xc. Mathematically, it is written by:

ηS1,S2(X) = X ⊗ (S1, S2) = (X ⊖ S1) ∩ (Xc ⊖ S2)

It is possible to define this operation with a single structuring element by setting
S2 = Sc

1 ∩ X. This is what will be used most of the time, in this case:

ηS(X) = X ⊗ S = (X ⊖ S) ∩ (Xc ⊖ Sc)

Since the hit-or-miss operation is formed exclusively from erosion, the origin of the
structuring element must be taken into account. Indeed, the hit-or-miss operation
will allow to detect patterns similar to the structuring element. These patterns will
be indicated by a point which is the origin of the structuring element. Therefore, hit-
or-miss transform is very useful to search for specific patterns in an image. Figure
1.6 illustrates an example of the hit-or-miss transformation. The structuring element,
presented in Figure 1.6a is a classical guitar, and its origin is on the sound board. The
X set in grey, in figure 1.6b, contains patterns similar to the structural element. The
hit-or-miss transform will detect the patterns that look exactly like the structural
element, so there are only two guitars detected. The results of the operation are in
black and correspond to the origins of the two detected patterns.

(A) Structuring element S (B) Hit-or-miss (black) of X (gray) by S

FIGURE 1.6: Example of a hit-or-miss transformation of X by S.

1.1.4 Other Possible Operations

The thickening operation of X, Th(X) is obtained by adding the result of hit-or-miss
at the initial set:

Th(X) = X ∪ ηS1,S2(X)

If the origin is contained in S2 the background structuring element, X ⊗ (S1, S2) ⊆ X
and the thickening make sense. Moreover, th(X) correspond to thinning a set X, it is
equivalent to delete the result of the hit-or-miss transform from the original set:

th(X) = X ∩ ηS1,S2(X)c = X \ ηS1,S2(X)
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If the origin is contained in S1 the foreground structuring element, X ⊗ (S1, S2) ⊆ Xc

and the thinning make sense. It is possible to define other operations by deleting the
erosion or the opening from the initial set. Thus, the top-hat transform τS is obtained
by eliminating the opening of X from X:

τS(X) = X \ γS(X)

In the same way the outline of X is the global set X removed from the erosion of X.

1.2 Mathematical Morphology on Functions

The notions that have been mentioned until now apply to binary sets, one case of
concrete applications is binary images where each pixel is black or white. To gener-
alize these notions to grey level images, it is necessary to work with pixels that take
a value that is no more binary but a number that will characterize the grey level, for
example the high values will be the darkest pixels and vice-versa. Therefore, it is
necessary to work with functions E −→ T where E is the pixel space of the image
and T ⊆ R the grayscale values. Let us take F : E −→ T which will play the role of
grey-level image and G : E −→ T the structuring function, which respectively replace
the sets X and S of the previous part. These functions having value −∞ outside a
bounded support. To illustrate the main possible operations, the two functions F
and G will be represented in Figure 1.7. The structuring function G will be chosen
constant and the origin will be placed in the middle.

(A) Grey-level image F (B) Structuring function G

FIGURE 1.7: Example of two grey-level functions F and G.

It is possible to mathematically express the dilation δG(F) = F ⊕ G and erosion
εG(F) = F ⊖ G of the F and G functions for any x ∈ E:

F ⊕ G(x) = sup
t∈E

(F(x − t) + G(t)) = sup
t∈supp(G)

(F(x − t) + G(t))

F ⊖ G(x) = inf
t∈E

(F(x + t)− G(t)) = inf
t∈supp(G)

(F(x + t)− G(t))

With the conventions that if in the expression F(x − t) + G(t) there is ∞ or −∞ the
result will be equal to −∞, just as with the expression F(x + t)− G(t), if there is ∞
or −∞ it will take the value ∞. Figure 1.8 illustrates these two operations by using
the examples of the two functions in Figure 1.7. Since the origin is in the middle of
the structuring function G level there is still:

∀x ∈ E, εG(F)(x) ≤ F(x) ≤ δG(F)(x)
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(A) Dilation of F by G (B) Erosion of F by G

FIGURE 1.8: Example of a dilation and an erosion.

Once dilation and erosion have been defined, it is possible to define the opening
γG(F) = F ◦ G and the closing ϕG(F) = F • G in the same way as in the previous
section, i.e.:

F ◦ G = (F ⊖ G)⊕ G F • G = (F ⊕ G)⊖ G

Figure 1.9 illustrates these two operations, to try to better understand these oper-
ations, let us note Hypo(F) = {(x, ν) : x ∈ E, ν ∈ T, ν ≥ F(x)} the hypograph of
F. It is possible to visualize the opening operation with the hypograph. In fact, the
hypograph of F ◦ G will be the result of the opening of the hypograph of F by the
graph of G, from a morphological set point of view defined in the previous section.
Similarly for the F • G hypograph, it can be seen as the result of the closing of the F
hypograph by the graph of G. As in the previous section, the following inequalities
are always true:

∀x ∈ E, γG(F)(x) ≤ F(x) ≤ ϕG(F)(x)

(A) Opening of F by G (B) Closing of F by G

FIGURE 1.9: Example of an opening and a closing.

The properties of the four operations ⊕, ⊖, ◦ and • in the case of sets can be extended
to functions. For example, the idempotence of opening and closing is preserved.
These four operations on the set of function E −→ T is what is called Grey-Level
Morphology and will allow us to process and analyze images in the following sec-
tions.





11

Chapter 2

Mathematical Morphology on Sets
Applied to Music

A video illustrating the musical examples of this chapter is available here.

2.1 Applications to Symbolic Music

Mathematical morphology is a theory that is generally applied to image processing.
Non-inversible and non-linear sets of operations modify the shapes contained in the
image. They allow to filter the image by using a predefined structuring element.
This theory was first developed for binary images and then extended to gray scale
and color images. There are very few direct applications of mathematical morphol-
ogy to music. M. Karvonen [9, 10] has used morphological tools to detect patterns
in a database that are almost identical to a standard pattern. For this purpose, mor-
phological operations are applied to a piano roll representation. Also, C. Agon et
al. [11] applied morphology by working on formal concept lattices built on musical
intervals.

To apply morphology to music, we will start by using morphology concepts on bi-
nary images. To do this, it is necessary to find a good representation of the music,
i.e. reduce a piece of music to a binary image without losing too much information.
There are many ways to do this. A first intuitive idea is to perceive the music piece
as a particular piano roll. Indeed, in this piano roll, we do not take into account the
duration of the notes. To process data more easily, only the apparition of a note will
be important. In addition, since the image must be binary, the coefficients must be
0 or 1. The value 1 will mean that a note is played while 0 is similar to the absence
of a note. Therefore, the notes are all of constant intensity. This first representation
helps to understand how to apply tools from mathematical morphology to music.
One of the fundamental problems is to find a good musical representation to apply
the operations resulting from mathematical morphology. The piano roll presented in
Figure 2.1 is a first idea, but the musical forms that appear are not compact and not
connected. Since morphological operators work very well on images that contain
connected shapes, efforts must be made to modify the operators and/or modify the
musical representation that is currently the piano roll. Thus, the chapter 2 focuses
on the classical visualization of music in the form of piano roll where it is possible
but more complicated to adapt mathematical operators.

https://www.youtube.com/watch?v=mVa3vKUOBfk
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2.2 Opening Operation in Order to Extract Data

2.2.1 A First Application of an Opening Operation

In the four basic operations of mathematical morphology, the opening seems to be
the most appropriate for detecting musical patterns. Indeed, this operation will al-
low to extract the patterns of the piano roll which are similar to the structuring el-
ement, regardless of the pitch of the note and the time at which they appear. Thus,
by choosing a good structuring element, we will be able to isolate certain proper-
ties, keeping only certain chords, extracting some particular patterns or removing
the melody from the piece of music. To illustrate this, let us take a fifth chord as a
structuring element represented in Figure 2.1b, the note that corresponds to the fifth
is seven semitones higher than the fundamental note. For this structuring element,
both notes are played at the same time. Therefore, doing an opening operation by
this structuring element will isolate all the fifth chords (when the fifth is played at
the same time as the fundamental). The piano roll of the Pyramid Song theme of the
British group Radiohead is represented in Figure 2.1a.

E E E

F# F# F# F# F# F#
G G G G G G G G

A A A

B B B B B B B B B B B

C# C# C# C# C# C#
D D D D D D D D

E E E

F#F# F# F# F# F#F# F# F# F# F#
G G G G G G G G

G#G# G# G#
A A A A A A A

A# A# A# A# A# A#
B B B B B B B B B B B B B

C# C#C#C# C# C# C# C# C# C# C#

E E E

F# F# F# F# F# F# F# F# F# F# F# F# F# F# F# F# F#

(A) Piano roll of Pyramid Song from Radiohead

First

Fifth

(B) The structuring element is
a fifth chord

FIGURE 2.1: Example of a piano roll and a structural element.

The result of the opening on Pyramid Song by a fifth chord is shown in Figure 2.2.
The piano roll becomes much clearer because the fifth chords are clearly visible.
Moreover, the melody is no longer present, we have kept only the basis of the theme.
Thus, the opening operation allowed us to isolate the chords of the theme.

E E E

F# F# F# F# F# F#
G G G G G G G G

A A A

B B B

C# C# C# C# C# C#
D D D D D D D D

E E E

F# F# F# F# F# F# F# F#

B B B B B B B B B

C# C# C# C# C# C#

F# F# F# F# F# F# F# F# F#

FIGURE 2.2: Piano roll of an opening by a fifth chord of Pyramid Song
from Radiohead.
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2.2.2 Opening with a More Relevant Structuring Element

It is possible to choose more complex structuring elements such as major, minor or
seventh chords to capture further information about a piece. An opening operation
of X with several structuring elements S1, S2, ..., Sn will be defined as:

γS1,S2,...,Sn(X) = (X ◦ S1) ∪ (X ◦ S2) ∪ ... ∪ (X ◦ Sn)

The union of openings is an opening (in a general algebraic sense, i.e. increasing,
idempotent and anti-extensive operator). Figure 2.3 shows the first eight bars of
the famous Beatles song Hey Jude. The melody is present on the upper part of the
piano roll because it is played in the high notes, while the basses are played in the
lower parts. On the central part are represented the chords that are played during
the piece.

C C C C C C C C C C C

F F F F F F F F F

G G G G G G G G

A# A# A#

C C C C C C C C C C C C C

E
F F F F F F F F F F

A#

C C C C C C C C C C C C C C C C C C C C C C C C C

D D D D D D D D D

E E E E E E E E
F F F F F F F F F F F F F F F F F F F F F F F F

G G G G G G G G

A A A A A A A A A A A A A A A
A# A# A# A# A# A# A# A#

E
F F F

G G G

A A A A A A
A# A# A#

C C C C C C C C

D D D D D D D

E E
F F F F

G

FIGURE 2.3: Piano roll of Hey Jude from the Beatles.

These measures are essentially based on major chords, so it is natural to choose a
major chord as a structuring element to be able to extract the central part. Since a
major chord is composed of three First/Third/Fifth notes, it can be represented in
three different ways if the order is maintained, as in Figure 2.4.

First

Third

Fifth

(A) First/Third/Fifth

Third

Fifth

First

(B) Third/Fifth/First

Fifth

First

Third

(C) Fifth/First/Third

FIGURE 2.4: Structuring elements are the three representations of a
major chord in the piano roll.
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Taking these three representations of a major chord as structuring elements, we ex-
tract all the major chords from these first eight bars. The result of the opening is
shown in Figure 2.5. Thus, only the chords are kept on this new piano roll. The
piano roll is not displayed in its entirety to save space in this report but it is worth
imagining that the rest of the piano roll is empty. The melodic part and the bass part
have been deleted by the opening action.

C C C C C C C C C C C C C C C C C C C C C C C

D D D D D D D D

E E E E E E E E
F F F F F F F F F F F F F F F F F F F F F F F

G G G G G G G G

A A A A A A A A A A A A A A A
A# A# A# A# A# A# A# A#

FIGURE 2.5: Piano roll of an opening by the three representations of
a major chord of Hey Jude.

Once again, the structuring element is chosen so that all the notes of the chord are
played at the same time. One could imagine a structuring element where the chord
is spread over time like arpeggios.

2.3 Hit-or-Miss Transform to Detect the Key

2.3.1 A First Approach to Detect the Key

To analyze a piece of music, it may be necessary to know its key. Indeed, this in-
formation makes it possible to understand which scales and notes are used. For
example, if the key is C major or A minor, the notes mainly used will be the seven
white notes of the piano while the other five black notes of the piano will be much
rarer or even non-existent in most cases. Thus, the study of a piece can generally
be reduced to the study of the seven notes of the key. The Figure 2.6 highlights
the notes used when the key is C major or A minor. The following pattern ap-
pears: tone/tone/semi-tone/tone/tone/tone/tone/semi-tone. This pattern is in-
dependent of the key because if the key changes it amounts to rotate the pattern in
Figure 2.6. Therefore, to determine the key of a piece, it is necessary to be able to

C
C#

D

D#

E

F
F#

G

G#

A

A#

B

FIGURE 2.6: Twelve musical notes represented in a circle.

determine how this pattern is placed. This is exactly what the hit-or-miss opera-
tion can do. This operation makes it possible to indicate the presence of a certain
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pattern by its center, the center of the pattern is therefore to be chosen before per-
forming the operation. The structuring element presented in Figure 2.7 is based on
the tone/tone/semi-tone, tone/tone/tone/tone/tone/tone/semi-tone pattern. It is
necessary to choose the origin of the structuring element on the fundamental, start-
ing from the bottom, it will be the first note for the major mode in Figure 2.7a and
the sixth note for the minor mode in Figure 2.7b. Thus, it is necessary to represent all

First

Second

Third
Fourth

Fifth

Sixth

Seventh

(A) Major tonality

First

Second

Third

Fourth

Fifth
Sixth

Seventh

(B) Minor tonality

FIGURE 2.7: Structuring element of a major or minor key.

the notes that are played to see the pattern of Figure 2.7 appear. To do this, the piano
roll must be flattened on the pitch axis and quotiented by the octave. Since this pat-
tern contains twelve high notes, it is not enough to represent the twelve notes. The
representation in the circle will allow us to have a single solution by applying the hit-
or-miss transformation. Figure 2.8a represents the notes that are played during the
introduction of "Hey Jude" represented in Figure 2.3. Black notes are those that are
played during the MIDI file of "Hey Jude". After applying the hit-or-miss operation

B

Bb

A

G#

G

F#

F

E

D#

D

C#

C

(A) Notes played

C
C#

D

D#

E

F
F#

G

G#

A

A#

B

(B) Notes played represented in
a circle

B

Bb

A

G#

G

F#

F

E

D#

D

C#

C

(C) Result of hit-or-miss

FIGURE 2.8: Example of a tone detection by hit-or-miss transform.

with the structuring element in Figure 2.7a in the circle in Figure 2.8b, we obtain Fig-
ure 2.8c which allows us to conclude that the key is F. It is possible then to reduce the
study of the piece to the notes of the major key F which are: C/D/E/F/G/A/Bb.
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2.3.2 A More Advanced Way to Detect the Key

However, the previous method works when all notes in the scale are played. If
one of the notes is missing, which is possible if the study is performed over a short
period of time, the pattern in figure 2.7a will not be detected. To remedy this, it is
necessary to look at the absence of notes, that is to say to choose the complementary
of the structuring element of Figure 2.7. The new structuring element is represented
in figure 2.9. The origin of this structuring element will always be located in the
first in order to return the key. It can be seen that this representation corresponds

First

Second

Third
Fourth

Fifth

Sixth

Seventh

(A) Structuring element
(B) Structuring element representated in a

circle

FIGURE 2.9: Structuring element that will make it possible to detect
the absence of notes.

exactly to the traditional image of a piano. This is quite normal because the black
notes of a piano correspond to the notes that are not in the C major key, it is exactly
the pattern formed by these notes that we will look for. Remember that this method
works on MIDI files with little information, some measures with few notes. For
example, the introduction to Radiohead’s Videotape that is played on the piano is
represented as a piano roll in Figure 2.10. The flattened piano roll is shown in Figure
2.11a. There are few different notes played: C#/A/G#/F#/E, not enough to fill all
the notes of a key. Therefore, the previous method will not work. It is necessary to

C# C# C# C#

E E E E E E E E

F# F#

G# G# G# G# G#
A A A A A

FIGURE 2.10: Piano roll of the theme of Videotape from Radiohead.

be interested in the notes that are not played, for that it is necessary to work with the
complementary of the flattened piano roll which appears in Figure 2.11b represented
in a circle. Among the notes in the circle that are not played, look for the pattern of
Figure 2.9b. To do this, it is also necessary to apply the hir-or-miss operation with
this structuring element. The pattern appears several times when there are not many
notes in the MIDI file as in the example chosen. In our case, the pattern appears twice
in Figure 2.11c. This means that there are two possible choices for the tone. It is then
necessary to choose among these different possible tones. In our example in Figure
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(A) Piano roll
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(B) Complementary in a circle
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(C) Hit-or-miss
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F

E
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D

C#

C

(D) Tonality

FIGURE 2.11: Example of a tone detection by the hit-or-miss opera-
tion by using the complementary method.

2.11c the two possible tones are A and E. However, it is easy to notice on the piano
roll in Figure 2.10 that the notes C# and E are predominant. This argument leads
to the conclusion that the key will be E and not A. In conclusion, by observing the
frequency at which notes appear during the MIDI file, it allows one to make a choice
to determine the right key.

2.3.3 Representation in Relation to the Key

Once the key of a piece has been determined, it is possible to represent the piano roll
in this key. In the previous example in Figure 2.10, we determined that the key is
E. Figure 2.12 represents the piano roll in the key of the song. In general, a tonality
representation is equivalent to deleting five notes on the piano roll, which means
going from twelve to seven notes. The result is a more compact representation. An-

C# C# C# C#

E E E E E E E E

A
G# G#

F#

A
G# G#

F#

A
G#

A A

C#
D#
E
F#
G#
A
B

FIGURE 2.12: Piano roll immersed in its tonality of the theme of
Videotape from Radiohead.

other important property that results from a representation in key is that major and
minor chords are represented by the same patterns. Indeed, in the tonality, there
will always be only one note between the first and the third and one note between
the third and the fifth. Consequently, major or minor chords will be in a single form,
with the permutation of the three notes keeping the order, so three possible patterns,
which are illustrated in Figure 2.13.

First

Third

Fifth

(A) First/Third/Fifth

First

Third

Fifth

(B) Third/Fifth/First

First

Third

Fifth

(C) Fifth/First/Third

FIGURE 2.13: Representations of a major/minor chords in the piano
roll.
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Chapter 3

A New Approach for Visualizing
Musical Pitch Variations

A video illustrating the musical examples of this chapter is available here.

3.1 Identify Melodic Patterns in a Melody

3.1.1 Description of the Method for a Melody

The objective of this chapter will be to characterize the melodies by detecting certain
repetitive patterns. These patterns are the result of pitch changes within the melody.
In a completely natural way, let us represent the notes of the melody on a graph
where the abscissa axis represents time while the ordinate axis represents the pitch
of the note. Thus, a note played at time t at a pitch p will be the point (t, p). This
note will be linked to the next one to form the Melodic Curve which characterize the
melody. The Melodic Contour is then defined by the consecutive normalized slopes
of this curve. That is too say, the melodic contour is defined by the set of direc-
tion between consecutive pitches of a melody, +1 and -1 indicating respectively an
ascending and a descending interval, while 0 indicates that the interval is neither
ascending nor descending. Figure 3.1 gives an example of a melodic contour equal
to {+1, 0,−1,+1,−1}.

◦

◦ ◦

◦

◦

◦

+
1

0

−
1

+
1

−
1

FIGURE 3.1: The melodic contour is equal to {+1, 0, -1, +1, -1}.

The melodic contour has become a fundamental tool whether for music percep-
tion [12, 13], music analysis [14] or music theory [15]. In our case, it will be used
to simplify the information and to characterise musical patterns. By studying the
melody over a much longer period of time, it is possible to see some patterns appear
in the melodic contour. The next few pages of this report will focus on this type of
pattern, called Melodic Pattern, in two famous musical works and then generalize
this notion.

https://www.youtube.com/watch?v=Zb6Aa9JZ-jE
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3.1.2 Prelude of Bach in C major, BWV 846

One of the most famous pieces of classical music is Johann Sebastian Bach’s first
prelude published in 1722 . This is the major C prelude that was later classified as
BWV 846. This piece is the introduction to the book The Well-Tempered Clavier,
which contains a prelude and a fugue in each of the twelve semitones in major and
minor, i.e 48 works. The melodic curve at the beginning of the piece is shown in
Figure 3.2.
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FIGURE 3.2: Melodic curve of BWV 846.

To simplify the visualization, the melodic contour is represented as an image in Fig-
ure 3.3, a black pixel will mean a value of +1, a white pixel −1 and grey pixel 0.
This representation is much more explicit and makes it easier to identify melodic
patterns. As with the melodic curve, the melodic contour is not represented in its
entirety due to lack of space. However, it is necessary to imagine that this one ex-
tends in a similar way to what is represented.

FIGURE 3.3: Representation of the melodic contour of BWV 846.

Thus, a particular pattern emerges, it will be present throughout the whole piece.
This melodic pattern is represented in Figure 3.4 and its values are respectively:

{+1,+1,+1,+1,−1,+1,+1,−1}

This analysis works with this piece because it has a strong melodic regularity. Not
all Bach’s pieces are as regular, but in many situations it is possible to find a melodic
pattern which is present many times and that characterizes the melodic contour.

FIGURE 3.4: Melodic pattern of BWV 846 that appears in the melodic
contour.
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3.1.3 Études of Chopin Op. 10 No. 1

During the 1830s, Chopin published two books of Études of twelve études, Op. 10
and Op. 25, the first of which was dedicated « à son ami F. Liszt » ("to my friend
F. Liszt"). The first étude of Opus 10 contains a melodic pattern present throughout
the study. This pattern played exclusively by the right hand on the piano makes this
étude the most difficult to play of the two opuses. The profile of the melodic curve is
represented in Figure 3.5. As before, the first eight measures are represented in this
figure, but the pattern remains almost unchanged throughout this study.

0 4 8 12 16 20 24 28 32
Time

24

36

48

60

72

84

96

Pi
tc
h

FIGURE 3.5: Melodic curve of Chopin’s Étude Op. 10, No. 1.

As in the previous section, the melodic contour can be determined from the melodic
curve. This one, represented in Figure 3.6, is more complex than the previous one.
This is because the melodic pattern itself is longer and richer than the previous one.

FIGURE 3.6: Representation of the melodic contour of Chopin’s Étude
Op. 10, No. 1.

A melodic pattern emerges in the melodic contour. Represented in Figure 3.7, it
contains 32 values compared to 8 for the melodic pattern of the prelude BWV 846.
Moreover, this pattern has an inverse symmetry with respect to its centre, i.e. the
second half of the pattern is deduced from the first half by an inverse symmetry.

FIGURE 3.7: Pattern that appears in the melodic contour.
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The melodic patterns in Figure 3.4 and Figure 3.7 allow for a better understanding
of the regularity of the piece compared to the traditional vision of the pattern on the
musical score. Indeed, Figure 3.8 is a score that illustrates the pattern present on
these two pieces. This musical score allows to compare the two melodic patterns,
it is clear that they are not the same but it is complicated to extract exactly their
characteristics. For this reason, the presentation in black and white squares form is
much more visual and intuitive, it will allow more complex cases to be handled.

FIGURE 3.8: Comparison of Bach’s Prelude No. 1 in C major with
Chopin’s Étude Op. 10, No. 1.

3.2 A Matrix Representation to Generalize Melodic Patterns
for a Chord Sequence

3.2.1 Definition of the Transition Matrix between Two Chords

The previous section has made it possible to characterize certain regularities in the
melodies by studying the variations of the pitch. Numbers +1,−1 or 0 were used
to model these changes. Considering the importance of the melodic contour, it is
not surprising that multiple extensions have been proposed. For example, two other
contours were defined in [16]: the strong contour (melodic contour of only the notes
present on the beat) and the weak contour (strong contour with extra information if
there is a contour variation within the beat). Moreover, it was proposed in [17, 18]
to observe the directions at longer range, i.e., all the directions between the ith and
jth pitches, not only between the ith and (i + 1)th pitches as for the usual melodic
contour. However, these generalizations remain in the monophonic context, and
they do not handle musical chords. We propose a generalization of the melodic
contour to chord sequences, i.e., not restricted to note sequences.
During a sequence of two chords, it is impossible to use the previous method be-
cause it makes no sense to say that the chord is higher or lower if several notes are
played at the same time. Therefore, it is no longer a number that will characterize
this sequence but a matrix that we will call Transition Matrix. The coefficient of the
ith line and the jth column is the normalized value of the derivative of the curve that
passes through the ith lower note of the first chord and through the jth lower note
of the second chord. Thus if the first chord has n notes and the second m notes the
dimension of the transition matrix will be (n, m). Figure 3.9 illustrates how the tran-
sition matrix is constructed, in this example, the two chords have two notes, so it
will be a matrix (2, 2). To know the first line, the lowest note of the first chord must
be compared to the other notes of the next chord. The second line is constructed in
the same way with the other note of the first chord. This new method will have a
direct impact on the melodic contour. Instead of a sequence of numbers, it is now
defined more generally as a sequence of matrices. Thus, the transition matrices will
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FIGURE 3.9: In this example the transition matrix is
(
+0 +1
−1 +1

)
.

be assembled end to end to form the chord contour. Subsequently, the melodic pat-
terns will be defined in the same way by observing the recurring patterns in the
chord contour. The next two sub-sections will be devoted to the analysis of melodic
patterns when the dimension of the transition matrices are constantly (2, 2).

3.2.2 Prelude of Bach in C minor, BWV 847

After studying the first prelude of The Well-Tempered Clavier we can move on to the
second prelude, the one in C minor noted BWV 847. This prelude is also very regular
because it is all played in sixteenth notes. The fundamental difference with the first
prelude is that it is a étude with two voices where each note played is doubled. In
a certain sense this prelude is a two notes chord sequence. To visualize this, it is
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FIGURE 3.10: Melodic curves of BWV 847.

possible to link all the notes of one chord to all the notes of the next chord, which
is represented in Figure 3.10. Since all transition matrices are of size (2.2), the chord
contour, which represent the sequence of transition matrices, will have two lines.
Figure 3.11 represents a part of the chord contour. The chord contour appear as a



24 Chapter 3. A New Approach for Visualizing Musical Pitch Variations

FIGURE 3.11: Representation of the chord contour of BWV 847.

"frieze" that contains a certain periodicity. The periodicity that appears in the chord
contour is highlighted by the melodic pattern in Figure 3.12. This pattern is a union
of eight matrices (2,2). The melodic pattern thus obtained contains two dimensions,
it is a generalization of the one-voice melodic patterns studied in the previous pages.

FIGURE 3.12: Melodic pattern of BWV 847 that appears in the chord
contour.

Despite the lack of direct interpretations of the melodic pattern, it remains much
more visual than on a musical score. Indeed, Figure 3.13 illustrates the first four
measures of BWV 847. The melodic pattern is present height times on these two
bars. However, it is much more complicated to see it in relation to chord contour.
Thus, the interest of going through this matrix representation and the chord contour
makes it much easier to detect patterns within a musical piece.

FIGURE 3.13: Musical score of the first four measures of BWV 847.

3.2.3 Godowsky’s Arrangement Op. 10 No. 1

To continue the analogy with the first part, let us study again Chopin’s study Op.10
No.1. More precisely, Leopold Godowsky’s arrangement of Op. 10 No. 1. Studies
on Chopin’s Études were composed between 1893 and 1914 by Leopold Godowsky.
This one added complexity to the pieces already written by Chopin. In the case of
Op. 10 No. 1, the initial melody is now played on the left hand while each note
is doubled by the right hand. Again, this piece is a succession of two-note chords.
From a graphical point of view, the melodic curves are represented in Figure 3.14.

As before, the chord contour will have two lines because the transitions matrices are
all of size (2,2). This one is much more complicated than the previous one because
the melody is much more complex. The chord contour is represented in Figure 3.15,
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FIGURE 3.14: Melodic curves of Godowsky’s arrangement Op. 10
No. 1.

this time it is represented in its entirety in relation to the melodic curves of Figure
3.14. The chord contour is not perfectly periodic, but there is a pattern that seems to
appear four times. In the three previous examples, the chord contour was periodic
but in many situations, like this one, the chord contour have a certain regularity
that is not perfect. The chord contour will be described as almost periodic, because
this pattern is not exactly identical every time. The almost periodicity of the chord
contour will be predominant in corpus analysis in general. As for the almost peri-
odic functions, it is necessary to set a threshold value and a distance between two
melodic patterns. If the distance is less than the threshold, the pattern is considered
to be fairly close to the previous one and if the chord contour respects this character-
istic in its entirety it will then be almost periodic.

FIGURE 3.15: Representation of the chord contour of Godowsky’s ar-
rangement Op. 10 No. 1.

Since the piece is considered almost periodic, it is necessary to choose among sev-
eral melodic patterns that are similar. Nevertheless, to better represent the piece, it
is more appropriate to choose the pattern that is most often present. In the case of
Godowsky’s arrangement Op. 10 No. 1, the melodic pattern, composed of 24 transi-
tion matrices, which occurs most often is represented in Figure 3.16.

FIGURE 3.16: Melodic pattern of Godowsky’s arrangement Op. 10
No. 1 that appears in the chord contour.



26 Chapter 3. A New Approach for Visualizing Musical Pitch Variations

3.3 Theoretical Analysis of Transition Matrices

The purpose of this last section is to focus on the characteristics of the transitions
matrices. First of all, if the first chord has n notes and the second m notes they will
be of size (n, m) and they are of the following form:



+1 +1 +1 +1 +1
+1 +1 +1 +1

−1 +1 +1 +1
−1 −1 +1 +1
−1 −1 −1 +1
−1 −1 −1 −1
−1 −1 −1 −1 −1



That is to say, a transition matrix is composed of +1 in the upper right corner and -1
in the lower left corner. All the information in a transition matrix is located at the
diagonal level, i.e. at the intersection between these two values. With regard to the
ith line of the matrix, the change between the values -1 and +1 can be done in two
different ways, by a 0, which means that the ith note of the first chord is also in the
second chord, or without intermediate value which means that the ith note of the
first chord is not in the second chord. The transition matrix that sends an chord of n
notes on itself, called En, is the neutral element of size n and is of the form:

En =

0 +1 +1

−1
+1

−1 −1 0





A surprising property of transition matrices comes from the fact that we can de-
fine an inverse M−1 of a transition matrix. Let A1 and A2 be two chords and M the
transition matrix which goes from A1 to A2, the transition matrix which goes from
the A2 to A1 is −MT, therefore:

M−1 = −MT

It is possible to use transitions matrices to determine whether or not one chord is
higher-pitched sound than another. Indeed, in Figure 3.17, it is complicated to judge
whether the chord is higher-pitched or lower-pitched than the previous one. To do
this, when both chords have the same number of notes it is possible to use the trace
of the transition matrix. When the chords have a different number of notes (or not),
it is possible to look at the sum of all the coefficients of the transition matrix. In both
cases, by noting Tr the result of the trace or the sum of coefficients of the transition
matrix, it is possible to conclude with the following reasoning:

Tr > 0 ⇒ Higher chord Tr < 0 ⇒ Lower chord Tr = 0 ⇒ To Discuss
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◦

◦

◦

◦

◦

◦

FIGURE 3.17: In this case the transition matrix is

−1 +1 +1
−1 +1 +1
−1 −1 +1

.

The ith coefficient of the diagonal of the transition matrix corresponds to the slope
of the melodic curve, always normalized, passing through the ith note of the first
chord and the ith note of the second chord, therefore the diagonal identifies a direct
matching between the notes of the first and second chord. Thus, in Figure 3.17, the
two chords each have three notes. It is therefore possible to determine the trace of
the transition matrix. The value of the trace is +1, so it is positive and this allows us
to conclude that the second chord is higher-pitched than the first one. By calculating
the sum of the coefficients of the matrix, which corresponds to a comparison of each
note of the first chord with all those of the second chord, we also obtain the value +1
which concludes with the same result.
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Chapter 4

Analysis of the Musical Structure
based on Pitch Variations

Video illustrating this chapter is available by clicking here.

4.1 Introduction to Music Structure Analysis with the Study
of the Chord Contour

In the previous chapter, very regular pieces were analyzed where there was only one
melodic pattern. However, in the majority of music pieces there are several melodic
patterns present, for example one pattern may correspond to the verse and another
to the chorus etc. In addition, the size of the transition matrices varies because the
number of notes varies throughout the song, so the melodic patterns will be richer
and more varied. The chord contour, which is the set of transition matrices placed
end to end, can still be represented graphically. Indeed, Figure 4.1 represents the
introduction, approximately the first 40 seconds, of the piece at the piano March of
the Dwarfs composed by Edvard Grieg in 1891. As before, a black pixel corresponds
to a matrix coefficient of a value of +1, a light grey pixel to −1 and a dark grey pixel
to 0. The white value that is present in the chord contour corresponds to the absence
of a matrix coefficient because the size of the transition matrices varies.

FIGURE 4.1: Chord contour of the introduction of March of the
Dwarfs.

The chord contour can be divided into five passages that can be visually identified.
These five passages are represented in Figure 4.2. Thanks to this analysis it is possi-
ble to start to identify the structure of this piece. In addition, the first (Figure 4.2a)
and fourth (Figure 4.2d) themes are very similar.

(A) First theme (B) Second theme

(C) Third theme (D) Fourth theme (E) Fifth theme

FIGURE 4.2: Chord contour of the different musical themes in the
introduction of March of the Dwarfs.

https://www.youtube.com/watch?v=-1YPmO2F2w4&t=104s
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The rest of this section will focus on the study of the chord contour for a piece in
general. That is to say how to extract the musical structure of the chord contour and
how to define a distance between the obtained patterns?

4.2 Similarity Inside the Chord Contour

To calculate the similarities within the chord contour a common method in musical
analysis is to study the Self-Similarity Matrix [19]. To do this, it is first necessary to
define a distance on the elements contained in the chord contour, that is to say on
the transition matrices.

4.2.1 Distance Between Two Transition Matrices

The main difficulty in defining a distance on the transition matrices comes from the
fact that these matrices can be of different sizes. Let us first consider the case where
two transition matrices have the same size, the Hamming distance will be use. Let A
and B be two transition matrices of sizes (n, m), and N the function which is null
in 0 and which is equal to 1 elsewhere, i.e. N(x) = 1 for x ̸= 0 and N(x) = 0 for
x = 0. The distance d(A, B) between the matrices A and B is defined as the number
of different coefficients between these two matrices:

d(A, B) =
n

∑
i=1

m

∑
j=1

N(ai,j − bi,j),

where (ai,j)i,j and (bi,j)i,j are the coefficients of the A and B matrices.
If one of the two matrices has more rows (or columns) than the other matrix, the
idea is to delete rows (or columns) to reduce it to get two matrices of the same size
and use the previous formula to which the number of rows (or columns) deleted
will be added. The rows (or columns) to be deleted are those that minimize the
distance between the two matrices. A row (or column) deleted from a transition
matrix corresponds to a note that is deleted in the first chord (or second chord).
Thus, for A and B two matrices of size (n1, m1) and (n2, m2), the distance D(A, B)
between these two matrices of different sizes is:

D(A, B) = min
Φ,Ψ

(
min(n1,n2)

∑
i=1

min(m1,m2)

∑
j=1

N(aΦ(i,j) − bΨ(i,j))

)
+ |n1 − n2|+ |m1 − m2|,

where
{

Φ : {1, ..., min(n1, n2)} × {1, ..., min(m1, m2)} −→ {1, ..., n1} × {1, ..., m1}
Ψ : {1, ..., min(n1, n2)} × {1, ..., min(m1, m2)} −→ {1, ..., n2} × {1, ..., m2}

,

are two strictly increasing functions, (ai,j)i,j and (bi,j)i,j are always the coefficients of
the matrices A and B.

From a mathematical point of view, the first metric d respects symmetry, the identity
of indiscernibles, the non-negativity and the triangular inequality so it is well de-
fined as a metric on the matrix space with the same size. On the other hand, for the
second distance D, symmetry, the identity of indiscernibles and the non-negativity
are respected but not the triangular inequality, which does not really define a met-
ric in the mathematical sense but a semimetric. However, since it is only necessary
to make comparisons between two matrices, without looking for a path from one
matrix to another, triangular inequality is not essential.
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4.2.2 Self-Similarity Matrices Based on the Chord Contour

Using the semimetric D defined previously it is possible to determine the Self-Similarity
Matrix of the chord contour. By noting n the number of transition matrices contained
in the chord contour, the size of the self-similarity matrix is (n, n). By noting Mk the
kth transition matrix of the chord contour, the coefficient Ci,j of the line i and the
column j of the self-similarity matrix is defined by:

Ci,j = D(Mn−i, Mj)

Since D is symmetric the self-similarity matrix will be symmetric with respect to
the antidiagonal (which is the diagonal that starts from the bottom left corner and
goes to the top right corner). Moreover, the antidiagonal is very useful because by
identifying the different blocks, it allows us to detect the zones which are similar to
themselves so the different musical passages. Therefore, the antidiagonal allows us
to have a direct information on the structure of the piece and to identify the different
melodics patterns. Figure 4.3 represents the self-similarity matrix using the example
of the introduction of March of the Dwarfs where the chord contour are represented
in Figure 4.1. The value equal to zero is symbolized by the white color while the
black color means a high value of the semimetric D.

FIGURE 4.3: Self-similarity matrix of the introduction of March of the
Dwarfs.

The different passages can be read on the antidiagonal and five passages can be
visually identified. The similarity between the first and fourth themes is clearly
perceptible on the antidiagonal of this matrix. These passages have been highlighted
in Figure 4.4, it is possible to detect them manually. In the following section, we will
use methods to filter this matrix to be able to detect these passages automatically.
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FIGURE 4.4: Different themes on the antidiagonal of the self-
similarity matrix.

4.3 Filtering of the Self-Similarity Matrix using Morpholog-
ical Tools to Determine the Structure of the Piece

To extract data from the self-similarity matrix, it is necessary to isolate the blocks on
the antidiagonal, i.e. find the structures identified in Figure 4.4. The objective will
be to homogenize the areas of the self-similarity matrix. For this purpose, it is pos-
sible to use morphological tools. Opening is particularly well adapted to this situa-
tion. Since all the antidiagonal coefficients are zero, because: ∀i ∈ {1, ...n}, Cn−i,i =
D(Mi, Mi) = 0, the blocks of the self-similarity matrix represented in Figure 4.4,
that are on the antidiagonal will be reduced to the smallest local value, that is 0. By
taking a constant and square structuring element, because we want to keep the an-
gles of the blocks, it is then possible to homogenize the areas of the self-similarity
matrix, and even stronger to reduce the blocks that are on the antidiagonal to a zero
value. Figure 4.5 illustrates two filtration techniques, the first method, in Figure

(A) Threshold applied on the self-similarity
matrix

(B) Opening applied on the self-similarity
matrix

FIGURE 4.5: Morphological filters applied to the self-similarity matrix
to extract information on the song structure.
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4.5a, is frequently used, it is a threshold filtering. This technique is very simple and
consists in defining a threshold value below which each coordinate of the matrix is
reduced to zero. The second method, illustrated in Figure 4.5b, is the method we
presented: opening by a constant and square structuring element. The goal is to de-
tect the overall structure of the piece, so the large main blocks of the antidiagonal, so
it is necessary to choose a sufficiently large structuring element, that is 12x12 in size.
The thresholding does not allow us to homogenize the blocks while the antidiagonal
blocks are well reduced to zero (in white color) with the opening. Indeed, thresh-
olding is an operation that acts globally on the matrix, the same threshold value is
applied everywhere. On contrary, opening is an operator that acts locally on the
zones of the matrix, as if the threshold value were to change depending on where
the operation applies.
The flood fill algorithm allows us to isolate a connected component. Thanks to this,
it is possible to isolate the antidiagonal from the Figure 4.5b. The connected com-
ponent contains the different blocks that we are looking for because with opening
they have all been set to a zero value, so they form a single related component. Fig-
ure 4.6a represents the connected component of the antidiagonal. This figure can be
made clearer by applying an opening to this new image again, which is now a binary
image and therefore no more a grayscale image. The final result is shown in Figure
4.6b. In this last figure, it is clearly possible to identify the five blocks searched.

(A) Flood fill applied to the antidiagonal of the
self-similarity matrix

(B) Opening applied on the connected compo-
nent to isolate the five blocks

FIGURE 4.6: Analysis of the information contained around the antidi-
agonal of the self-similarity matrix.

The structure of the piece is generally identified. Nevertheless, it is legitimate to
ask whether it is possible to detect the song structure on a smaller scale to identify
the bars, and therefore to detect shorter melodic patterns [20]. This can be done by
changing the size of the opening structuring element applied to the self-similarity
matrix. Indeed, by taking a structuring element that is always homogeneous and
square but this time smaller, it is possible to detect blocks around the antidiagonal
that will be much smaller. To summarize, by changing the size of the structuring el-
ement, we modify the precision of the block detection. A small structuring element
will detect melodic patterns contained in a bar while a large structuring element will
detect melodic patterns of a longer duration. This idea will be developed in the next
section.
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4.4 Detection of Blocks Around the Antidiagonal of the Self-
Similarity Matrix at Several Levels of Filtering

To illustrate the notion of filtering with increasingly structuring elements to detect
larger melodic patterns, we will study the famous Alla Turca composed in 1780 by
Wolfgang Amadeus Mozart and popularly known as the Turkish Rondo or Turkish
March. The objective is always to find melodic patterns that allow us to characterize
musical themes. These melodic patterns are still to be found inside the chord con-
tour. Given the length of the piece, it is preferable to represent the chord contour
in different parts that is why it is cut in three in Figure 4.7. Directly identifying the
different melodic patterns on this figure is not obvious because there is much more
data, so finding similarity to the eye becomes more complicated. The structure of the

FIGURE 4.7: Chord contour of Alla Turca.

piece is shown in Figure 4.8. This piece is divided into four main parts represented
by grey rectangles. These four parts are linked by the theme numbered by the let-
ter C and C′. The first and third parts are almost identical and contain the musical
themes A and B. The second part has a similar structure to the first and third part
but with the musical themes D and E, while the last final part is symbolized by the
letter F. Since the chord contour is much longer than before because the length of

A A B A B A C D D E D E D C A A B A B A C’ F

FIGURE 4.8: Musical structure of Alla Turca.

the piece is, the self-similarity matrix is also larger because it has more data, this one
is represented in Figure 4.9. Let us start by trying to detect the global structure of

FIGURE 4.9: Self-similarity matrix of Alla Turca.
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the piece, i.e. detect the four parts that are represented by grey rectangles in Figure
4.8 and the three transitions that are represented by the letters C and C′. To do this,
the self-similarity matrix must be filtered through a large structuring element to lose
as much detail as possible by homogenizing the blocks. Let us take a structuring
element which is a square of length 6 where all the coefficients are equal to 1, this
element is considered to be of high size compared to the size of the self-similarity
matrix. The result of the opening on the self-similarity matrix in Figure 4.9 by this
structuring element is presented in Figure 4.10a. The matrix seems more exploitable,
but it is by isolating the antidiagonal using the flood fill algorithm that we begin to
understand the structure of the part, this is represented in Figure 4.10b. Neverthe-
less, there is a frequent problem, it is necessary to apply an additional processing
to the antidiagonal. Indeed, this one has a structure filled with holes whereas we
would like the blocks to be full. It is then possible to apply a closing to this new bi-
nary image, that fills the holes (smaller than the structuring element) while keeping
the structure of the antidiagonal. This method will be systematically applied to the

(A) Opening of the self-
similarity matrix

(B) Extraction of the blocks
around the antidiagonal

(C) Closing of the blocks around
the antidiagonal

FIGURE 4.10: Filtration of the self-similarity matrix by a 6x6 size
structuring element.

antidiagonal to obtain a clearer image. The result of the closing by a structuring ele-
ment (of size 100x100 always homogeneous equal to 1) is presented in Figure 4.10c.
From this last image it is possible to detect the global structure of the piece. The dif-

FIGURE 4.11: First detection of the different blocks around the
antidiagonal to identify the global structure of the piece.
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ferent detection blocks are shown in Figure 4.11. The red blocks represent the grey
rectangles in Figure 4.8 while the blue blocks represent the C and C′ passages. This
method then works correctly to detect the global structure of the piece but it is possi-
ble to go further by detecting the different themes within the different blocks. To do
this, we filter the self-similarity matrix with a smaller structuring element to detect
smaller passages. By taking as structuring element a square of side 3 whose all coef-
ficients are equal to 1, the opening of the self-similarity matrix becomes less clear but
has more details which allow us to detect smaller blocks. The result is presented in
Figure 4.12a. As before, the flood fill algorithm allows to extract the antidiagonal of
this last matrix, which is represented in Figure 4.12b. As previously it is possible to
apply a closing to make the blocks simply connected. This result is shown in Figure
4.12c. This last image allows us to detect the structure inside each block, i.e. to detect
patterns of a duration similar to a bar. Since the global structure represented by the

(A) Opening of the self-
similarity matrix

(B) Extraction of the blocks
around the antidiagonal

(C) Closing of the blocks around
the antidiagonal

FIGURE 4.12: Filtration of the self-similarity matrix by a 3x3 size
structuring element.

red and blue blocks has been detected, all that remains is to look separately at the
structure inside each block. By focusing on each block independently of the others,
it is then possible to detect an internal structure within each block. It is possible to
overlay the information obtained on each block with the more global information in
Figure 4.11. These data on the structure of the piece are represented in Figure 4.13.

FIGURE 4.13: Representation of the different degrees of filtering
which allows to observe a global and internal structure in each block.
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Inside the first and third red blocks, a sub-structure emerges, the orange and light
blue squares symbolize respectively the themes A and B in Figure 4.8. This phe-
nomenon is repeated with the second red block, the orange and light blue squares
represent the D and E themes. This confirms the whole structure of the piece that
was in Figure 4.8. Once the structure of the piece has been found, it is possible to
return to the chord contour to find the different melodic patterns. The different pat-
terns in the chord contour identified with the figure 4.13 are represented in Figure
4.14.

(A) First theme A (B) Second theme B

(C) Transition theme C (D) Fourth theme D

(E) Fifth theme E (F) Transition theme C’

(G) Final theme F

FIGURE 4.14: Different musical themes in Alla Turca.

Before finishing reading this chapter, you are invited to visualize the filtration of the
self-similarity matrix of Alla Turca with an increasing structuring element. Video
that is available here allows to observe the progression of the structure of the piece.
Filtration begins with a 2x2 size structuring element and gradually increases to a
19x19 size structuring element. This makes it possible to reveal how the main musi-
cal themes are constructed.

https://www.youtube.com/watch?v=fgNtUg3NNRU
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Conclusion and Future Work

This report proposes to apply mathematical morphology to music in two different
ways: binary mathematical morphology to a piano roll representation and grayscale
mathematical morphology to a self-similarity matrix. First of all, Chapter 2 presents
some direct applications of mathematical morphology to music by working on pi-
ano rolls. Morphological tools allow to analyze a musical piece such as isolating the
melody or the chords and extracting the tonality. The results we obtained allow us to
get a first view of what morphology can bring to music. Then, Chapter 3 proposes a
new method to visualize the regularity of a piece of music: observe the melodic pat-
terns. These patterns are based on the pitch variations along the piece, also called
melodic contour, i.e. the normalized slope of the melodic curve to summarize the
information. The originality of this approach comes from the fact that this idea is
generalized to chords. If chords follow one another instead of notes, it will no longer
be a number that represents the pitch variation but a matrix, called transition ma-
trix that will characterize the sequence between two chords. Thus, melodic patterns
become much richer, more varied and more complex. To detect them, Chapter 4 sug-
gests working on the self-similarity matrix of the chord contour. With morphological
tools, it is possible to have different degrees of filtering on this matrix. This provides
information on the structure of the piece at different scales. Filtering the matrix with
a fairly high degree of loss will highlight the main parts of the song, while filtering
more precisely will make it possible to identify the different musical themes within
each part. Therefore, the self-similarity matrix makes it possible to determine the
structure of the piece and, by working with the chord contours, to find the melodic
patterns that characterize the different musical themes.

In future work it would be possible to work on a similarity matrix between two
chord contour from two different pieces. This would make it possible to identify
common patterns and determine the proximity between these two pieces. Another
way to explore would be to establish a classification of melodic patterns, to see if
patterns are more present in some musical genres and in certain countries or cul-
tures.

On a more personal point of view, this internship has allowed me to discover new
methods of work, to develop my skills in musical analysis and to deepen my knowl-
edge of mathematics in music. I am very satisfied to have been able to develop the
idea presented in the last three chapters. This work clearly confirms my choice to do
a PhD in musical computational analysis. Finally, during these six months spent at
Ircam as an intern, I constantly interacted with many Ircam researchers and musi-
cians through meetings at conferences organized or even around the coffee machine
and during the lunch break. These meetings are very rich and allow us to under-
stand the other research themes studied at Ircam, thus allowing us to play a part in
the Ircam’s ideology which is to gather researchers and musicians to work as a team
on a shared project.
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Appendix A

Music Pieces Analysis with the
Pitch Variations Method

A.1 Analysis of the First Gymnopédie

The Gymnopédies are three works for piano composed by Erik Satie, published in
Paris in 1888. We will focus on the first Gymnopédie. The chord contour, represented
in Figure A.1, show that the structure of the song repeats itself twice. The following
Figures illustrate the method of analysis proposed in Chapters 3 and 4.

FIGURE A.1: Chord contour of the first Gymnopédie.

FIGURE A.2: Self-similarity matrix of the first Gymnopédie.
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(A) Grayscale opening (B) Extraction of the blocks (C) Binary closing

FIGURE A.3: Filtering of the self-similarity matrix by a 2x2 size
structuring element.

(A) Grayscale opening (B) Extraction of the blocks (C) Binary closing

FIGURE A.4: Filtering of the self-similarity matrix by a 4x4 size
structuring element.

(A) Grayscale opening (B) Extraction of the blocks (C) Binary closing

FIGURE A.5: Filtering of the self-similarity matrix by a 8x8
size structuring element.
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A.2 Analysis of the third movement of Moonlight Sonata

It is possible to study longer and more complex pieces like the third movement of
the Piano Sonata No. 14 by Ludwig van Beethoven. More popularly known as the
third movement of Moonlight Sonata, the sonata of two hundred bars that evokes
a funeral march was composed in 1801. The size of the piece results in a chord
contour of a consequent length. The series was cut in eight parts for more clarity
and represented in Figure A.6. As before, the other figures illustrate the method
proposed in this report to determine the structure of the song.

FIGURE A.6: Chord contour of the third movement of
Moonlight Sonata.

FIGURE A.7: Self-similarity matrix of the third movement of
Moonlight Sonata.
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(A) Grayscale opening (B) Extraction of the blocks (C) Binary closing

FIGURE A.8: Filtering of the self-similarity matrix by a 4x4 size
structuring element.

(A) Grayscale opening (B) Extraction of the blocks (C) Binary closing

FIGURE A.9: Filtering of the self-similarity matrix by a 5x5 size
structuring element.

(A) Grayscale opening (B) Extraction of the blocks (C) Binary closing

FIGURE A.10: Filtering of the self-similarity matrix by a 17x17 size
structuring element.
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