Mathematical Morphology and Musical Representations

Carlos Agon, Moreno Andreatta, Jamal Atif, Isabelle Bloch

2019

Spatial representations of music

Spatial representations and structure

→http://www.lacl.fr/~lbigo/hexachord

Mathematical morphology in a nutshell

Dilation: operation in complete lattices that commutes with the supremum.

Erosion: operation in complete lattices that commutes with the infimum.

 \Rightarrow applications on sets, fuzzy sets, functions, logical formulas, graphs, etc.

Using a structuring element:

- dilation as a degree of conjunction: $\delta_B(X) = \{x \in S \mid B_x \cap X \neq \emptyset\},\$
- erosion as a degree of implication: $\varepsilon_B(X) = \{x \in S \mid B_x \subseteq X\}.$

A lot of other operations...

Demonstrations...

Formal framework: complete lattices

- Lattice: (\mathcal{T}, \leq) (≤ partial ordering) such that $\forall (x, y) \in \mathcal{T}, \exists x \lor y$ and $\exists x \land y$.
- Complete lattice: every family of elements (finite or not) has a smallest upper bound and a largest lower bound.
- Examples of complete lattices:
 - $(\mathcal{P}(E), \subseteq)$: complete lattice, Boolean (complemented and distributive)
 - $(\mathcal{F}(\mathbb{R}^d), \subseteq)$
 - functions of \mathbb{R}^n in $\overline{\mathbb{R}}$ for the partial ordering \leq :
 - $f \leq g \Leftrightarrow \forall x \in \mathbb{R}^n, \ f(x) \leq g(x)$
 - partitions
 - logics (propositional logics, modal logics...)
 - fuzzy sets, bipolar fuzzy sets
 - rough sets and fuzzy rough sets
 - formal concepts
 - ...

FCA (Ganter et al.)

- *G* = set of objects.
- M = set of attributes or properties.
- $I \subseteq G \times M.$
- (X, Y) $(X \in \mathcal{P}(G), Y \in \mathcal{P}(M)) =$ formal concept if (X, Y) is maximal for $X \times Y \subseteq I$.
- Partial ordering: $(X_1, Y_1) \preceq (X_2, Y_2) \Leftrightarrow X_1 \subseteq X_2 (\Leftrightarrow Y_2 \subseteq Y_1).$
- ⇒ Lattice structure \mathbb{C} and $\bigwedge_{t \in T} (X_t, Y_t) = (\bigcap_{t \in T} X_t, \alpha(\beta(\bigcup_{t \in T} Y_t))),$ $\bigvee_{t \in T} (X_t, Y_t) = (\beta(\alpha(\bigcup_{t \in T} X_t)), \bigcap_{t \in T} Y_t).$

Derivation operators: $\alpha(X) = \{ m \in M \mid \forall g \in X, (g, m) \in I \}, \\
\beta(Y) = \{ g \in G \mid \forall m \in Y, (g, m) \in I \}.$

• (X, Y) formal concept $\Leftrightarrow \alpha(X) = Y$ and $\beta(Y) = X$.

K	composite	even	odd	prime	square
1			×		×
2		×		×	
3			Х	×	
4	×	×			×
5			Х	×	
6	×	×			
7			Х	×	
8	×	×			
9	×		Х		×
10	×	×			

Objects: integers from 1 to 10.

Attributes: composite (c), even (e), odd (o), prime (p) and square (s).

A concept lattice for musical structures

[R. Wille & R. Wille-Henning, « Towards a Semantology of Music », ICCS 2007, Springer, 2007]

A concept lattice for the diatonic scale

[R. Wille & R. Wille-Henning, « Towards a Semantology of Music », ICCS 2007, Springer, 2007]

A different concept lattice for the diatonic scale

[R. Wille & R. Wille-Henning, « Towards a Semantology of Music », ICCS 2007, Springer, 2007]

How to reduce the combinatorial explosion?

• T. Schlemmer, S. E. Schmidt, «A formal concept analysis of harmonic forms and interval structures », Annals of Mathematics and Artificial Intelligence 59(2), 241–256 (2010)

C. Agon, I. Bloch et al.

Core idea:

- Harmonic forms = objects
- Intervals = attributes

Harmonic system: $\mathbb{T} = (T, \Delta, I)$, with T = set of tones, I = musical intervals, and $\Delta : T \times T \rightarrow I$ s.t.

$$\forall (t_1, t_2, t_3), \Delta(t_1, t_2) + \Delta(t_2, t_3) = \Delta(t_1, t_3) \text{ and } \Delta(t_1, t_2) = 0 \text{ iff } t_1 = t_2$$

Here: $\mathbb{T}_n = (\mathbb{Z}_n, \Delta_n, \mathbb{Z}_n)$, where $n \in \mathbb{Z}_+$ represents an octave, $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$, and Δ_n is the difference modulo n.

Harmonic forms $\mathcal{H}(\mathbb{T}_n)$: equivalence classes of Ψ :

$$\forall H_1 \subseteq \mathbb{Z}_n, \forall H_2 \subseteq \mathbb{Z}_n, \ H_1 \Psi H_2 \text{ iff } \exists i \text{ s.t. } H_1 = H_2 + i$$

where $H + i = \{t + i \mid t \in H\}$ if t + i exists for all $t \in H$.

Musical context $\mathbb{K} = (\mathcal{H}(\mathbb{T}_n), \mathbb{Z}_n, R)$:

•
$$G = \mathcal{H}(\mathbb{T}_n) = \text{objects} = \text{harmonic forms},$$

•
$$M = \mathbb{Z}_n$$
 = attributes = intervals,

• R =occurrence of an interval in an harmonic form.

Example: 7-tet \mathbb{T}_7 (C, D, E, F, G, A, B) Intervals = unison (0), second (1), third (2), fourth (3). Equivalent concepts by reversing the order on one space.

$$\delta: A \to B, \ \varepsilon: B \to A$$
$$\delta(a) \leq_B b \Leftrightarrow a \leq_A \varepsilon(b)$$

increasing operators $\varepsilon \delta \varepsilon = \varepsilon, \delta \varepsilon \delta = \delta$ $\varepsilon \delta = \text{closing}, \delta \varepsilon = \text{opening}$ $Inv(\varepsilon \delta) = \varepsilon(B), Inv(\delta \varepsilon) = \delta(A)$ $\varepsilon(B) = \text{Moore family}$ $\delta(A) = \text{dual Moore family}$ $\delta = \text{dilation: } \delta(\lor_A a_i) = \lor_B(\delta(a_i))$ $\varepsilon = \text{erosion: } \varepsilon(\land_B b_i) = \land_A(\varepsilon(b_i))$ $\begin{array}{l} \alpha: B \to A, \beta: A \to B \\ a \leq_A \alpha(b) \Leftrightarrow b \leq_B \beta(a) \\ (\Leftrightarrow \beta(a) \leq'_B b \text{ with } \leq'_B \equiv \geq_B) \\ \text{ decreasing operators} \\ \alpha\beta\alpha = \alpha, \beta\alpha\beta = \beta \\ \alpha\beta \text{ and } \beta\alpha = \text{ closings} \\ Inv(\alpha\beta) = \alpha(B), Inv(\beta\alpha) = \beta(A) \\ \alpha(B) \text{ and } \beta(A) = \text{ Moore families} \end{array}$

 $\alpha(\vee_B b_i) = \wedge_A \alpha(b_i)$ $\beta(\vee_A a_i) = \wedge_B \beta(a_i) \text{ (anti-dilation)}$

Dilation and erosion in a concept lattice

- From join and meet irreducible elements (and for any element by disjunction/conjunction of irreducible elements).
- From valuations and derived distances (and structuring element = ball of the chosen distance).

(Atif et al. ICFCA 2013, LFA 2015, IJUFKS 2016, Agon et al., ICCS 2018)

Congruence: equivalence relation θ on a lattice \mathcal{L} , compatible with join and meet, i.e. $(\theta(a, b) \text{ and } \theta(c, d)) \Rightarrow (\theta(a \lor c, b \lor d) \text{ and } \theta(a \land c, b \land d))$, for all $a, b, c, d \in \mathcal{L}$.

Quotient lattice: \mathcal{L}/θ

Example: congruence grouping the most common harmonic forms in a same equivalence class.

Harmonico-morphological descriptors:

- Musical piece \mathcal{M} , harmonic system $\mathbb{T}_{\mathcal{M}}$, concept lattice $\mathbb{C}(\mathcal{M})$
- $H_{\mathbb{C}}^{\mathcal{M}}$: formal concepts corresponding to the harmonic forms in \mathcal{M}
 - θ grouping all formal concepts in $H_{\mathbb{C}}^{\mathcal{M}}$ into one same class;
 - θ_{δ} grouping all formal concepts in $\delta(H_{\mathbb{C}}^{\mathcal{M}})$ into one same class;
 - θ_{ε} grouping all formal concepts in $\varepsilon(H_{\mathbb{C}}^{\mathcal{M}})$ into one same class.

Proposed harmonic descriptors: quotient lattices C(M)/θ, C(M)/θ_δ, and C(M)/θ_ε.

Example: Ligeti's String Quartet No. 2 (M2 Pierre Mascarade)

Formal concepts associated with the harmonic forms found in $H^{\mathcal{M}}$: $H^{\mathcal{M}}_{\mathbb{C}}$ (red), dilation $\delta(H^{\mathcal{M}}_{\mathbb{C}})$ (green), and erosion $\varepsilon(H^{\mathcal{M}}_{\mathbb{C}})$ (yellow).

C. Agon, I. Bloch et al

Congruence relations θ , θ_{δ} , and θ_{ε} on $\mathbb{C}(\mathcal{M})$ (7-tet) generated by: $H^{\mathcal{M}}_{\mathbb{C}}$, $\delta(H^{\mathcal{M}}_{\mathbb{C}})$, and $\varepsilon(H^{\mathcal{M}}_{\mathbb{C}})$.

Quotient lattices: $\mathbb{C}(\mathcal{M})/\theta$, $\mathbb{C}(\mathcal{M})/\theta_{\delta}$, and $\mathbb{C}(\mathcal{M})/\theta_{\varepsilon}$. Interpretation:

- Dilations and erosions of the set of formal concepts provide upper and lower bounds of the description.
- Congruences provide a structural summary of the harmonic forms.
- Proposed descriptors = good representative of *M*, since they preserve the intervallic structures and provide compact summaries, which would allow for comparison between musical pieces.

Summary of the lattice-reduction process

Mathematical morphology on various spatial representations

- Rythms:
 - Object = rhythm
 - Structuring element = rhythm
 - Dilation via time translation
 - Concatenation
- Melodies
- Piano roll
- Perspective: Tonnetz, ...

Examples on piano roll representations (M2 Paul Lascabettes)

Pyramid Song (Radiohead)

Play

Structuring element (fifth):

C. Agon, I. Bloch et al.

MM - Music

24 / 25

Opening

Hey Jude (Beatles)

Opening

Play

Structuring elements (triad):

