Mathematical Morphology and Musical Representations

Carlos Agon, Moreno Andreatta, Jamal Atif, Isabelle Bloch

Spatial representations of music

Spatial representations and structure

Mathematical morphology in a nutshell

Dilation: operation in complete lattices that commutes with the supremum.
Erosion: operation in complete lattices that commutes with the infimum.
\Rightarrow applications on sets, fuzzy sets, functions, logical formulas, graphs, etc.
Using a structuring element:
■ dilation as a degree of conjunction: $\delta_{B}(X)=\left\{x \in \mathcal{S} \mid B_{X} \cap X \neq \emptyset\right\}$,

- erosion as a degree of implication: $\varepsilon_{B}(X)=\left\{x \in \mathcal{S} \mid B_{x} \subseteq X\right\}$.

$-$

A lot of other operations...

Demonstrations...

Formal framework: complete lattices

■ Lattice: (\mathcal{T}, \leq) (\leq partial ordering) such that $\forall(x, y) \in \mathcal{T}, \exists x \vee y$ and $\exists x \wedge y$.
■ Complete lattice: every family of elements (finite or not) has a smallest upper bound and a largest lower bound.
■ Examples of complete lattices:
■ $(\mathcal{P}(E), \subseteq)$: complete lattice, Boolean (complemented and distributive)

- $\left(\mathcal{F}\left(\mathbb{R}^{d}\right), \subseteq\right)$
- functions of \mathbb{R}^{n} in $\overline{\mathbb{R}}$ for the partial ordering \leq :

$$
f \leq g \Leftrightarrow \forall x \in \mathbb{R}^{n}, \quad f(x) \leq g(x)
$$

- partitions
- logics (propositional logics, modal logics...)
- fuzzy sets, bipolar fuzzy sets
- rough sets and fuzzy rough sets
- formal concepts

FCA (Ganter et al.)

- $G=$ set of objects.

■ $M=$ set of attributes or properties.

- $I \subseteq G \times M$.
$\square(X, Y)(X \in \mathcal{P}(G), Y \in \mathcal{P}(M))=$ formal concept if (X, Y) is maximal for $X \times Y \subseteq I$.
$■$ Partial ordering: $\left(X_{1}, Y_{1}\right) \preceq\left(X_{2}, Y_{2}\right) \Leftrightarrow X_{1} \subseteq X_{2}\left(\Leftrightarrow Y_{2} \subseteq Y_{1}\right)$.
$■ \Rightarrow$ Lattice structure \mathbb{C} and
$\bigwedge_{t \in T}\left(X_{t}, Y_{t}\right)=\left(\bigcap_{t \in T} X_{t}, \alpha\left(\beta\left(\bigcup_{t \in T} Y_{t}\right)\right)\right)$,
$\bigvee_{t \in T}\left(X_{t}, Y_{t}\right)=\left(\beta\left(\alpha\left(\bigcup_{t \in T} X_{t}\right)\right), \bigcap_{t \in T} Y_{t}\right)$.
- Derivation operators:

$$
\begin{aligned}
& \alpha(X)=\{m \in M \mid \forall g \in X,(g, m) \in I\}, \\
& \beta(Y)=\{g \in G \mid \forall m \in Y,(g, m) \in I\} .
\end{aligned}
$$

$■(X, Y)$ formal concept $\Leftrightarrow \alpha(X)=Y$ and $\beta(Y)=X$.

\mathbb{K}	composite	even	odd	prime	square
1			\times		\times
2		\times		\times	
3			\times	\times	
4	\times	\times			\times
5			\times	\times	
6	\times	\times			
7			\times	\times	
8	\times	\times			
9	\times		\times		\times
10	\times	\times			

Objects: integers from 1 to 10.
Attributes: composite (c), even (e), odd (o), prime (p) and square (s).

A concept lattice for musical structures

[R. Wille \& R. Wille-Henning, « Towards a Semantology of Music », ICCS 2007, Springer, 2007]

A concept lattice for the diatonic scale

	Cm	Em				
$m i$	X	X				
sol	X	X				

(\{mi, sol $\},\left\{\mathrm{C}_{\mathrm{m}}, \mathrm{E}_{\mathrm{m}}\right\}$)
[R. Wille \& R. Wille-Henning, « Towards a Semantology of Music », ICCS 2007, Springer, 2007]

A different concept lattice for the diatonic scale

[R. Wille \& R. Wille-Henning, « Towards a Semantology of Music », ICCS 2007, Springer, 2007]

How to reduce the combinatorial explosion?

- T. Schlemmer, S. E. Schmidt, «A formal concept analysis of harmonic forms and interval structures », Annals of Mathematics and Artificial Intelligence 59(2), 241-256 (2010)

A lattice structure on intervals

Core idea:
■ Harmonic forms = objects
■ Intervals $=$ attributes
Harmonic system: $\mathbb{T}=(T, \Delta, I)$, with $T=$ set of tones, $I=$ musical intervals, and $\Delta: T \times T \rightarrow I$ s.t.
$\forall\left(t_{1}, t_{2}, t_{3}\right), \Delta\left(t_{1}, t_{2}\right)+\Delta\left(t_{2}, t_{3}\right)=\Delta\left(t_{1}, t_{3}\right)$ and $\Delta\left(t_{1}, t_{2}\right)=0$ iff $t_{1}=t_{2}$
Here: $\mathbb{T}_{n}=\left(\mathbb{Z}_{n}, \Delta_{n}, \mathbb{Z}_{n}\right)$, where $n \in \mathbb{Z}_{+}$represents an octave, $\mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}$, and Δ_{n} is the difference modulo n. Harmonic forms $\mathcal{H}\left(\mathbb{T}_{n}\right)$: equivalence classes of ψ :

$$
\forall H_{1} \subseteq \mathbb{Z}_{n}, \forall H_{2} \subseteq \mathbb{Z}_{n}, H_{1} \psi H_{2} \text { iff } \exists i \text { s.t. } H_{1}=H_{2}+i
$$

where $H+i=\{t+i \mid t \in H\}$ if $t+i$ exists for all $t \in H$.

Musical context $\mathbb{K}=\left(\mathcal{H}\left(\mathbb{T}_{n}\right), \mathbb{Z}_{n}, R\right)$:
■ $G=\mathcal{H}\left(\mathbb{T}_{n}\right)=$ objects $=$ harmonic forms,
■ $M=\mathbb{Z}_{n}=$ attributes $=$ intervals,

- $R=$ occurrence of an interval in an harmonic form.

Example: 7-tet $\mathbb{T}_{7}(\mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{A}, \mathrm{B})$
Intervals $=$ unison (0), second (1), third (2), fourth (3).

Adjunction and Galois connection

Equivalent concepts by reversing the order on one space.

$$
\begin{array}{cc}
\delta: A \rightarrow B, \varepsilon: B \rightarrow A & \alpha: B \rightarrow A, \beta: A \rightarrow B \\
\delta(a) \leq_{B} b \Leftrightarrow a \leq_{A} \varepsilon(b) & a \leq_{A} \alpha(b) \Leftrightarrow b \leq_{B} \beta(a) \\
\text { increasing operators } & \left(\Leftrightarrow \beta(a) \leq_{B}^{\prime} b \text { with } \leq_{B}^{\prime} \equiv \geq_{B}\right) \\
\varepsilon \delta \varepsilon=\varepsilon, \delta \varepsilon \delta=\delta & \text { decreasing operators } \\
\varepsilon \delta=\operatorname{closing}, \delta \varepsilon=\text { opening } & \alpha \beta \alpha=\alpha, \beta \alpha \beta=\beta \\
\operatorname{Inv}(\varepsilon \delta)=\varepsilon(B), \operatorname{Inv}(\delta \varepsilon)=\delta(A) & \operatorname{Inv}(\alpha \beta)=\alpha(B), \operatorname{Inv}(\beta \alpha)=\beta(A) \\
\varepsilon(B)=\text { Moore family } & \alpha(B) \text { and } \beta(A)=\text { Moore families } \\
\delta(A)=\text { dual Moore family } & \\
\delta=\text { dilation: } \delta\left(\vee_{A} a_{i}\right)=\vee_{B}\left(\delta\left(a_{i}\right)\right) & \alpha\left(\vee_{B} b_{i}\right)=\wedge_{A} \alpha\left(b_{i}\right) \\
\varepsilon=\text { erosion: } \varepsilon\left(\wedge_{B} b_{i}\right)=\wedge_{A}\left(\varepsilon\left(b_{i}\right)\right) & \beta\left(\vee_{A} a_{i}\right)=\wedge_{B} \beta\left(a_{i}\right) \text { (anti-dilation) }
\end{array}
$$

Dilation and erosion in a concept lattice

- From join and meet irreducible elements (and for any element by disjunction/conjunction of irreducible elements).
- From valuations and derived distances (and structuring element $=$ ball of the chosen distance).
(Atif et al. ICFCA 2013, LFA 2015, IJUFKS 2016, Agon et al., ICCS 2018)

Reducing a concept lattice using congruences

Congruence: equivalence relation θ on a lattice \mathcal{L}, compatible with join and meet, i.e. $(\theta(a, b)$ and $\theta(c, d)) \Rightarrow(\theta(a \vee c, b \vee d)$ and $\theta(a \wedge c, b \wedge d))$, for all $a, b, c, d \in \mathcal{L}$.
Quotient lattice: \mathcal{L} / θ
Example: congruence grouping the most common harmonic forms in a same equivalence class.
Harmonico-morphological descriptors:
■ Musical piece \mathcal{M}, harmonic system $\mathbb{T}_{\mathcal{M}}$, concept lattice $\mathbb{C}(\mathcal{M})$

- $H_{\mathbb{C}}^{\mathcal{M}}$: formal concepts corresponding to the harmonic forms in \mathcal{M}
- θ grouping all formal concepts in $H_{\mathbb{C}}^{\mathcal{M}}$ into one same class;
- θ_{δ} grouping all formal concepts in $\delta\left(H_{\mathbb{C}}^{\mathcal{M}}\right)$ into one same class;
- θ_{ε} grouping all formal concepts in $\varepsilon\left(H_{\mathbb{C}}^{\mathcal{M}}\right)$ into one same class.

■ Proposed harmonic descriptors: quotient lattices $\mathbb{C}(\mathcal{M}) / \theta, \mathbb{C}(\mathcal{M}) / \theta_{\delta}$, and $\mathbb{C}(\mathcal{M}) / \theta_{\varepsilon}$.

Example: Ligeti's String Quartet No. 2 (M2 Pierre Mascarade)

Formal concepts associated with the harmonic forms found in $H^{\mathcal{M}}: H_{\mathbb{C}}^{\mathcal{M}}$ (red), dilation $\delta\left(H_{\mathbb{C}}^{\mathcal{M}}\right)$ (green), and erosion $\varepsilon\left(H_{\mathbb{C}}^{\mathcal{M}}\right)$ (yellow).

Congruence relations θ, θ_{δ}, and θ_{ε} on $\mathbb{C}(\mathcal{M})$ (7 -tet) generated by: $H_{\mathbb{C}}^{\mathcal{M}}, \delta\left(H_{\mathbb{C}}^{\mathcal{M}}\right)$, and $\varepsilon\left(H_{\mathbb{C}}^{\mathcal{M}}\right)$.

Quotient lattices: $\mathbb{C}(\mathcal{M}) / \theta, \mathbb{C}(\mathcal{M}) / \theta_{\delta}$, and $\mathbb{C}(\mathcal{M}) / \theta_{\varepsilon}$.
Interpretation:
■ Dilations and erosions of the set of formal concepts provide upper and lower bounds of the description.
■ Congruences provide a structural summary of the harmonic forms.
■ Proposed descriptors $=$ good representative of \mathcal{M}, since they preserve the intervallic structures and provide compact summaries, which would allow for comparison between musical pieces.

Summary of the lattice-reduction process

Mathematical morphology on various spatial representations

- Rythms:
- Object = rhythm
- Structuring element $=$ rhythm
- Dilation via time translation
- Concatenation

■ Melodies

- Piano roll

■ Perspective: Tonnetz, ...

Examples on piano roll representations (M2 Paul Lascabettes)

Pyramid Song (Radiohead)

Play

Opening

Play

Structuring element (fifth):

Hey Jude (Beatles)

Play
Structuring elements (triad):

