

ICCSS EDINBURGH

Musical Descriptions based on Formal Concept Analysis and Mathematical Morphology

Carlos Agon¹, Moreno Andreatta^{1,2}, Jamal Atif³, Isabelle Bloch⁴, and Pierre Mascarade³

 ¹ CNRS-IRCAM-UPMC, Paris, France carlos.agon@ircam.fr, moreno.andreatta@ircam.fr
² IRMA/GREAM/USIAS, Université de Strasbourg, Paris, France
³ Université Paris-Dauphine, PSL Research University, CNRS, UMR 7243, LAMSADE, 75016 Paris, France, jamal.atif@dauphine.fr,pierre.m@protonmail.com
⁴ LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France, isabelle.bloch@telecom-paristech.fr

A starting example: the Gunner's Dream by Pink-Floyd

http://www.lacl.fr/~lbigo/hexachord

Lattices and diagrams in Structural Symbolic MIR

Formal Concept Analysis: the double history

M. Barbut

• M. Barbut, « Note sur l'algèbre des techniques d'analyse hiérarchique », in B. Matalon (éd.), L'analyse hiérarchique, Paris, Gauthier-Villars, 1965.

analyse et de mathématique social

- M. Barbut, B. Monjardet, *Ordre et Classification. Algèbre et Combinatoire*, en deux tomes, 1970
- M. Barbut, L. Frey, « Techniques ordinales en analyse des données », Tome I, *Algèbre et Combinatoire des Méthodes Mathématiques en Sciences de l'Homme*, Paris, Hachette, 1971.

• B. Leclerc, B. Monjardet, « Structures d'ordres et sciences sociales », *Mathématiques et sciences humaines*, 193, 2011, 77-97

• R. Wille, « Mathematische Sprache in der Musiktheorie », in B. Fuchssteiner, U. Kulisch, D. Laugwitz, R. Liedl (Hrsg.): Jahrbuch Überblicke Mathematik, B.I.-

Wissenschaftsverlag, Mannheim, 1980, p. 167-184.

- R. Wille, « Restructuring Lattice Theory: An approach based on Hierarchies of Concepts », I. Rival (ed.), *Ordered Sets*, 1982
- R. Wille, « Sur la fusion des contextes individuals », Mathématiques et sciences humaines, tome 85, 1984.
- B. Ganter & R. Wille, *Formal Concept Analysis: Mathematical Foundations*, Springer, Berlin, 1998

R. Wille

Formal Concept Analysis: the common root

M. Barbut

Centre d'analyse et de mathématique sociales

- M. Barbut, « Note sur l'algèbre des techniques d'analyse hiérarchique », in B. Matalon (éd.), L'analyse hiérarchique, Paris, Gauthier-Villars, 1965.
- M. Barbut, B. Monjardet, *Ordre et Classification. Algèbre et Combinatoire*, en deux tomes, 1970
- M. Barbut, L. Frey, « Techniques ordinales en analyse des données », Tome I, *Algèbre et Combinatoire des Méthodes Mathématiques en Sciences de l'Homme*, Paris, Hachette, 1971.

• B. Leclerc, B. Monjardet, « Structures d'ordres et sciences sociales », *Mathématiques et sciences humaines*, 193, 2011, 77-97

• R. Wille, « Mathematische Sprache in der Musiktheorie », in B. Fuchssteiner, U. Kulisch, D. Laugwitz, R. Liedl (Hrsg.): Jahrbuch Überblicke Mathematik. B.I.-Wissenschaftsverlag, Mannheim, 1980, p. 167-184.

• R. Wille, « Restructuring Lattice Theory: An approach based on Hierarchies of Concepts », I. Rival (ed.), *Ordered Sets*, 1982

• R. Wille, « Sur la fusion des contextes individuals », Mathématiques et sciences humaines, tome 85, 1984.

• B. Ganter & R. Wille, *Formal Concept Analysis: Mathematical Foundations*, Springer, Berlin, 1998

R. Wille

Formal Concept Analysis in a nutshell

- G = set of objects.
- M = set of attributes or properties.
- $\bullet I \subseteq G \times M.$
- (X, Y) $(X \in \mathcal{P}(G), Y \in \mathcal{P}(M)) =$ formal concept if (X, Y) is maximal for $X \times Y \subseteq I$.
- Partial ordering: $(X_1, Y_1) \preceq (X_2, Y_2) \Leftrightarrow X_1 \subseteq X_2 (\Leftrightarrow Y_2 \subseteq Y_1).$
- ⇒ Lattice structure \mathbb{C} and $\bigwedge_{t\in T}(X_t, Y_t) = (\bigcap_{t\in T} X_t, \alpha(\beta(\bigcup_{t\in T} Y_t))),$ $\bigvee_{t\in T}(X_t, Y_t) = (\beta(\alpha(\bigcup_{t\in T} X_t)), \bigcap_{t\in T} Y_t).$

Derivation operators:

$$lpha(X) = \{m \in M \mid \forall g \in X, (g, m) \in I\},\ eta(Y) = \{g \in G \mid \forall m \in Y, (g, m) \in I\}.$$

• (X, Y) formal concept $\Leftrightarrow \alpha(X) = Y$ and $\beta(Y) = X$.

Formal Concept Analysis and Mathematical Morphology

I. Bloch

- Bloch, I., Heijmans, H., Ronse, C.: Mathematical Morphology. In: Aiello, M., Pratt- Hartman, I., van Benthem, J. (eds.) *Handbook of Spatial Logics*, chap. 13, pp. 857–947. Springer (2007)
- Atif, J., Bloch, I., Distel, F., Hudelot, C.: Mathematical morphology operators over concept lattices. In: International Conference on Formal Concept Analysis. vol. LNAI 7880, pp. 28–43. Dresden, Germany (May 2013)
- Atif, J., Bloch, I., Hudelot, C.: Some relationships between fuzzy sets, mathematical morphology, rough sets, F-transforms, and formal concept analysis. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 24(S2), 1–32 (2016)

TECHNISCHE UNIVERSITÄT DARMSTADT

J. Atif

Dilation: operation in complete lattices that commutes with the supremum.

Erosion: operation in complete lattices that commutes with the infimum.

Complete lattices (\mathcal{T},\leq), (\mathcal{T}',\leq')

Algebraic dilation: $\delta : \mathcal{T} \to \mathcal{T}'$ such that

 $\forall (x_i) \in \mathcal{T}, \ \delta(\vee_i x_i) = \vee'_i \delta(x_i)$

Algebraic erosion: $\varepsilon : \mathcal{T}' \to \mathcal{T}$ such that

$$\forall (x_i) \in \mathcal{T}', \ \varepsilon(\wedge'_i x_i) = \wedge_i \varepsilon(x_i)$$

 $\delta: \mathcal{T} \to \mathcal{T}', \, \varepsilon: \mathcal{T}' \to \mathcal{T}, \, (\varepsilon, \delta)$ adjunction if:

 $\forall x \in \mathcal{T}, \forall y \in \mathcal{T}', \ \delta(x) \leq' y \Leftrightarrow x \leq \varepsilon(y)$

Dilation: operation in complete lattices that commutes with the supremum.

Erosion: operation in complete lattices that commutes with the infimum.

Complete lattices (\mathcal{T},\leq), (\mathcal{T}',\leq')

Algebraic dilation: $\delta:\mathcal{T}\to\mathcal{T}'$ such that

 $\forall (x_i) \in \mathcal{T}, \ \delta(\vee_i x_i) = \vee'_i \delta(x_i)$

Algebraic erosion: $\varepsilon : \mathcal{T}' \to \mathcal{T}$ such that

$$\forall (x_i) \in \mathcal{T}', \ \varepsilon(\wedge'_i x_i) = \wedge_i \varepsilon(x_i)$$

Equivalent concepts by reversing the order on one space.

 $\begin{array}{ll} \delta: A \to B, \ \varepsilon: B \to A \\ \delta(a) \leq_B b \Leftrightarrow a \leq_A \varepsilon(b) \end{array} \qquad \begin{array}{ll} \alpha: B \to A, \ \beta: A \to B \\ a \leq_A \alpha(b) \Leftrightarrow b \leq_B \beta(a) \end{array}$

A concept lattice for musical structures

[R. Wille & R. Wille-Henning, « Towards a Semantology of Music », ICCS 2007, Springer, 2007]

A concept lattice for the diatonic scale

[R. Wille & R. Wille-Henning, « Towards a Semantology of Music », ICCS 2007, Springer, 2007]

A concept lattice for the diatonic scale

[R. Wille & R. Wille-Henning, « Towards a Semantology of Music », ICCS 2007, Springer, 2007]

A different concept lattice for the diatonic scale

[R. Wille & R. Wille-Henning, « Towards a Semantology of Music », ICCS 2007, Springer, 2007]

How to reduce the combinatorial explosion?

• T. Schlemmer, S. E. Schmidt, « A formal concept analysis of harmonic forms and interval structures », *Annals of Mathematics and Artificial Intelligence* 59(2), 241–256 (2010)

A lattice structure based on musical intervals

Core idea:

- Harmonic forms = objects
- Intervals = attributes

Harmonic system: $\mathbb{T} = (T, \Delta, I)$, with T = set of tones, I = musical intervals, and $\Delta : T \times T \rightarrow I$ s.t.

$$\forall (t_1, t_2, t_3), \Delta(t_1, t_2) + \Delta(t_2, t_3) = \Delta(t_1, t_3) \text{ and } \Delta(t_1, t_2) = 0 \text{ iff } t_1 = t_2$$

Here: $\mathbb{T}_n = (\mathbb{Z}_n, \Delta_n, \mathbb{Z}_n)$, where $n \in \mathbb{Z}_+$ represents an octave, $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$, and Δ_n is the difference modulo n. Harmonic forms $\mathcal{H}(\mathbb{T}_n)$: equivalence classes of Ψ :

 $\forall H_1 \subseteq \mathbb{Z}_n, \forall H_2 \subseteq \mathbb{Z}_n, \ H_1 \Psi H_2 \text{ iff } \exists i \text{ s.t. } H_1 = H_2 + i$

where $H + i = \{t + i \mid t \in H\}$ if t + i exists for all $t \in H$.

• T. Schlemmer, M. Andreatta, « Using Formal Concept Analysis to represent Chroma Systems », MCM 2013, Springer, LNCS.

[•] T. Schlemmer, S. E. Schmidt, « A formal concept analysis of harmonic forms and interval structures », *Annals of Mathematics and Artificial Intelligence* 59(2), 241–256 (2010)

A lattice structure based on musical intervals

Core idea:

- Harmonic forms = objects
- Intervals = attributes

Group action

Harmonic system: $\mathbb{T} = (T, \Delta, I)$, with T = set of tones, I = musical intervals, and $\Delta : T \times T \rightarrow I$ s.t.

 $\forall (t_1, t_2, t_3), \Delta(t_1, t_2) + \Delta(t_2, t_3) = \Delta(t_1, t_3) \text{ and } \Delta(t_1, t_2) = 0 \text{ iff } t_1 = t_2$

Here: $\mathbb{T}_n = (\mathbb{Z}_n, \Delta_n, \mathbb{Z}_n)$, where $n \in \mathbb{Z}_+$ represents an octave, $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$, and Δ_n is the difference modulo n. Harmonic forms $\mathcal{H}(\mathbb{T}_n)$: equivalence classes of Ψ :

 $\forall H_1 \subseteq \mathbb{Z}_n, \forall H_2 \subseteq \mathbb{Z}_n, \ H_1 \Psi H_2 \text{ iff } \exists i \text{ s.t. } H_1 = H_2 + i$

where $H + i = \{t + i \mid t \in H\}$ if t + i exists for all $t \in H$.

• T. Schlemmer, M. Andreatta, « Using Formal Concept Analysis to represent Chroma Systems », MCM 2013, Springer, LNCS.

[•] T. Schlemmer, S. E. Schmidt, « A formal concept analysis of harmonic forms and interval structures », *Annals of Mathematics and Artificial Intelligence* 59(2), 241–256 (2010)

Group actions and the definition of harmonic forms

Congruence: equivalence relation θ on a lattice \mathcal{L} , compatible with join and meet, i.e. $(\theta(a, b) \text{ and } \theta(c, d)) \Rightarrow (\theta(a \lor c, b \lor d) \text{ and } \theta(a \land c, b \land d))$, for all $a, b, c, d \in \mathcal{L}$. Quotient lattice: \mathcal{L}/θ

Congruence: equivalence relation θ on a lattice \mathcal{L} , compatible with join and meet, i.e. $(\theta(a, b) \text{ and } \theta(c, d)) \Rightarrow (\theta(a \lor c, b \lor d) \text{ and } \theta(a \land c, b \land d))$, for all $a, b, c, d \in \mathcal{L}$. Quotient lattice: \mathcal{L}/θ

Congruence: equivalence relation θ on a lattice \mathcal{L} , compatible with join and meet, i.e. $(\theta(a, b) \text{ and } \theta(c, d)) \Rightarrow (\theta(a \lor c, b \lor d) \text{ and } \theta(a \land c, b \land d))$, for all $a, b, c, d \in \mathcal{L}$. Quotient lattice: \mathcal{L}/θ

Congruence: equivalence relation θ on a lattice \mathcal{L} , compatible with join and meet, i.e. $(\theta(a, b) \text{ and } \theta(c, d)) \Rightarrow (\theta(a \lor c, b \lor d) \text{ and } \theta(a \land c, b \land d))$, for all $a, b, c, d \in \mathcal{L}$. Quotient lattice: \mathcal{L}/θ

Harmonico-morphological descriptors:

- Musical piece \mathcal{M} , harmonic system $\mathbb{T}_{\mathcal{M}}$, concept lattice $\mathbb{C}(\mathcal{M})$
- $H_{\mathbb{C}}^{\mathcal{M}}$: formal concepts corresponding to the harmonic forms in \mathcal{M}
 - θ grouping all formal concepts in $H_{\mathbb{C}}^{\mathcal{M}}$ into one same class;
 - θ_{δ} grouping all formal concepts in $\delta(H_{\mathbb{C}}^{\mathcal{M}})$ into one same class;
 - θ_{ε} grouping all formal concepts in $\varepsilon(H_{\mathbb{C}}^{\mathcal{M}})$ into one same class.
- Proposed harmonic descriptors: quotient lattices $\mathbb{C}(\mathcal{M})/\theta$, $\mathbb{C}(\mathcal{M})/\theta_{\delta}$, and $\mathbb{C}(\mathcal{M})/\theta_{\varepsilon}$.

Harmonico-morphological descriptors:

- Musical piece \mathcal{M} , harmonic system $\mathbb{T}_{\mathcal{M}}$, concept lattice $\mathbb{C}(\mathcal{M})$
- $H_{\mathbb{C}}^{\mathcal{M}}$: formal concepts corresponding to the harmonic forms in \mathcal{M}
 - θ grouping all formal concepts in $H_{\mathbb{C}}^{\mathcal{M}}$ into one same class;
 - θ_{δ} grouping all formal concepts in $\delta(H_{\mathbb{C}}^{\mathcal{M}})$ into one same class;
 - θ_{ε} grouping all formal concepts in $\varepsilon(H_{\mathbb{C}}^{\mathcal{M}})$ into one same class.
- Proposed harmonic descriptors: quotient lattices $\mathbb{C}(\mathcal{M})/\theta$, $\mathbb{C}(\mathcal{M})/\theta_{\delta}$, and $\mathbb{C}(\mathcal{M})/\theta_{\varepsilon}$.

Summary of the lattice-reduction process

The paradigmatic music classification approach

S_n acting on the intervallic structures

Permutations on the intervallic structures

continuum, université de Strasbourg II, 1994

Permutohedron and Tonnetz: a structural inclusion

Permutohedron and *Tonnetz*: a structural inclusion

Permutohedron and *Tonnetz*: a structural inclusion

Permutohedron and a topological structural inclusion

The permutohedron as a musical conceptual space

The permutohedron as a musical conceptual space

The permutohedron as a lattice of formal concepts

Using MM/FCA to have a 'signature' of a musical piece

THANK YOU FOR YOUR ATTENTION