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The ’Cube Dance’ graph: the parsimonious graph for P1,0
�
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I The P1,0 binary relation connects two chords if they differ by the movement of only one
pitch class by one semitone.

�Douthett, J., Steinbach, P., Journal of Music Theory, ��(�), ���8, pp. ���–�6�. // Cohn, R. ’Audacious Euphony: Chromaticism and
the Triad’s Second Nature’, Oxford University Press, ����

Re�ning the P1,0 relation: the ‘Colored Cube Dance’
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I We consider three sub-relations of P1,0 named U , P , and L
I The relations P and L coincide on major and minor chords with the usual

neo-Riemannian operations.



The SMIR Project: advanced maths for the working musicologist
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The Tonnetz web environment (© SMIR Project) 

https://guichaoua.gitlab.io/web-hexachord/



A computational model of the Cube Dance (and its extensions)

è https://alexpof.github.io/interactive_mathmusic/Pmn_graphs/pmn_graphs.html

Alexandre Popoff
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The ’Cube Dance’ graph: the parsimonious graph for P1,0
�

CM

Cm

EmEM

A[m

A[M

Fm

FM

D[M D[m

AM

Am

B[M

B[m

Dm DM

F ]m

F ]M

Gm

GM

E[ME[m

BM

Bm

Faug Gaug

Caug

Daug

I The P1,0 binary relation connects two chords if they differ by the movement of only one
pitch class by one semitone.

�Douthett, J., Steinbach, P., Journal of Music Theory, ��(�), ���8, pp. ���–�6�. // Cohn, R. ’Audacious Euphony: Chromaticism and
the Triad’s Second Nature’, Oxford University Press, ����



A computational model of the Cube Dance (and its extensions)

è https://alexpof.github.io/interactive_mathmusic/Pmn_graphs/pmn_graphs.html

Alexandre Popoff

Jack Douthett

The ’Cube Dance’ graph: the parsimonious graph for P1,0
�

CM

Cm

EmEM

A[m

A[M

Fm

FM

D[M D[m

AM

Am

B[M

B[m

Dm DM

F ]m

F ]M

Gm

GM

E[ME[m

BM

Bm

Faug Gaug

Caug

Daug

I The P1,0 binary relation connects two chords if they differ by the movement of only one
pitch class by one semitone.

�Douthett, J., Steinbach, P., Journal of Music Theory, ��(�), ���8, pp. ���–�6�. // Cohn, R. ’Audacious Euphony: Chromaticism and
the Triad’s Second Nature’, Oxford University Press, ����



A computational model of the Cube Dance (and its extensions)

è https://alexpof.github.io/interactive_mathmusic/Pmn_graphs/pmn_graphs.html

Alexandre Popoff

Jack Douthett

The ’Cube Dance’ graph: the parsimonious graph for P1,0
�

CM

Cm

EmEM

A[m

A[M

Fm

FM

D[M D[m

AM

Am

B[M

B[m

Dm DM

F ]m

F ]M

Gm

GM

E[ME[m

BM

Bm

Faug Gaug

Caug

Daug

I The P1,0 binary relation connects two chords if they differ by the movement of only one
pitch class by one semitone.

�Douthett, J., Steinbach, P., Journal of Music Theory, ��(�), ���8, pp. ���–�6�. // Cohn, R. ’Audacious Euphony: Chromaticism and
the Triad’s Second Nature’, Oxford University Press, ����



A computational model of the Cube Dance (and its extensions)

è https://alexpof.github.io/interactive_mathmusic/Pmn_graphs/pmn_graphs.html

Alexandre Popoff

Jack Douthett

The ’Cube Dance’ graph: the parsimonious graph for P1,0
�

CM

Cm

EmEM

A[m

A[M

Fm

FM

D[M D[m

AM

Am

B[M

B[m

Dm DM

F ]m

F ]M

Gm

GM

E[ME[m

BM

Bm

Faug Gaug

Caug

Daug

I The P1,0 binary relation connects two chords if they differ by the movement of only one
pitch class by one semitone.

�Douthett, J., Steinbach, P., Journal of Music Theory, ��(�), ���8, pp. ���–�6�. // Cohn, R. ’Audacious Euphony: Chromaticism and
the Triad’s Second Nature’, Oxford University Press, ����

DEMO



Composing with Hamiltonian Cycles in the ‘classical’ Cube Dance 

The three Hamiltonian Cycles (CM = C, Cm = Cm, Caug = C+) 



The three Hamiltonian Cycles (CM = C, Cm = Cm, Caug = C+) 

Composing with Hamiltonian Cycles in the ‘classical’ Cube Dance 



è See you at the concert tribute to 
Jack Douthett (Thursday 



Tonnetz versus Cube Dance Analysis for Muse’s Take a bow
“Take a bow” (Black Holes and 
Revelations, 2006)

R
L U

èhttp://www.lacl.fr/~lbigo/hexachord

P



Two analytical approaches to Muse’s Take a bowAn application to Muse ’Take a bow’

�

I First analytical approach: U -U -P cycle
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A category-based approach of transformational analysis

?

☐

Popoff A., M. Andreatta, A. Ehresmann, « A Categorical Generalization of 
Klumpenhouwer Networks », MCM 2015, Queen Mary University, Springer, p. 303-314

☐ ☐



Re�ning the P1,0 relation: the ‘Colored Cube Dance’
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I We consider three sub-relations of P1,0 named U , P , and L
I The relations P and L coincide on major and minor chords with the usual

neo-Riemannian operations.

From the Cube Dance to the colored Cube Dance



A ‘weak’ algebraic structure

The MU,P,L monoid
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The monoidMU,P,L generated by U , P , and L contains �� elements and has for presentation

MU,P,L = hU ,P,L | P2 = L2 = e, LPL = PLP, U3 = U ,
UP = UL, PU = LU , U2PU2 = PU2PU2P,

(UP)2U2 = P(UP)2U2P, U2(PU)2 = PU2(PU)2Pi



The algebraic set-up: relational PK-nets

Automorphisms of the MU,P,L action

I Transposition by fourth is a special example of an automorphism of the action of
MU,P,L on the set X of major, minor, and augmented triads.

De�nition
The automorphism group A of the action of MU,P,L on X is the group of pairs (N, ⌫) where

I N : MU,P,L ! MU,P,L is an automorphism, and
I ⌫ is a bijection on X , such that
I we have pRq =) ⌫(p)N(R)⌫(q) for all R 2 MU,P,L and (p, q) 2 X2.

Composition is done term-wise.�

I Problem: can we determine the structure of A ?

�For the more general de�nition of the automorphism group of a functor S : M ! Rel, see Popoff, A., Andreatta, M., Ehresmann,
A. ’Relational poly-Klumpenhouwer networks for transformational and voice-leading analysis.’ J. Math. Music, ��(�), ���8, pp. ��–��

An application to Muse ’Take a bow’
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Automorphisms of the MU,P,L action

Theorem
The automorphism group A of the action ofMU,P,L onX is a group of order ���6 isomorphic
to (Z3

4 oD8)o (D6 ⇥ Z2).

I The group D6 ⇥ Z2 corresponds to the automorphisms N of the monoid MU,P,L itself.

I D6 corresponds to the automorphisms of the subgroup generated by P and L.

I Z2 corresponds to the image of U which can be either U or LUL.

I The complete structure of A is determined by the careful enumeration of the possible
bijections ⌫ : X ! X .

The algebraic set-up: relational PK-nets



Graphical representation of the possible automorphisms
Automorphisms of the MU,P,L action
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The gi are elements of the subgroup generated by PL (isomorphic to Z3). (see Table 1)



Composing (with) automorphismsComposing with automorphisms

I The groupA ⇠= (Z3
4oD8)o (D6⇥Z2) is too complex to be easily manipulated by hand.

I We developed an interactive interface intended for mathemusicians and composers for
transforming chord progressions using elements of A.

I HTML/SVG (graphical elements) and Javascript (code) allows one to develop complex
interfaces for outreach activities. No installation needed !

Live demo
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èDEMO



Thank you for your attention!


