An interactive tool for composing (with) automorphisms in the colored Cube Dance

cliome

Alexandre Popoff, Corentin Guichaoua and Moreno A**SINGM**

The SMIR Project: advanced maths for the working musicologist

The Tonnetz web environment (© SMIR Project)

https://guichaoua.gitlab.io/web-hexachord/

Parsimonious graphs on triads for Douthett's and Steinbach's P_{m,n} relations

https://alexpof.github.io/interactive_mathmusic/Pmn_graphs/pmn_graphs.html

Select chords to display:

Major / Minor chords

- Major / Minor / Augmented chords
- Major / Minor / Augmented / Sus4 chords

Select P_{m,n} relations to display:

*P*_{1,0}
*P*_{0,1}

P_{1,1}

- P_{2,0}
- P_{0,2}
- P_{2,1}
- P_{1,2}

Two triads are said to be P_{m,n}-related if *m* pitch classes move by a semitone, while *n* pitch classes move by a whole tone, the rest of the pitch classes being identical.

Based on the original paper of Douthett and Steinbach : Douthett, Jack, and Peter Steinbach. 1998. "Parsimonious Graphs: A Study in Parsimony, Contextual Transformations, and Modes of Limited Transposition." Journal of Music Theory 42 (2): 241–263.

Visualization and code by Alexandre Popoff. Best viewed with Chrome or Firefox. Compatibility with Internet Explorer and Microsoft Edge is not guaranteed.

Jack Douthett

Alexandre Popoff

The $\mathcal{P}_{1,0}$ binary relation connects two chords if they differ by the movement of only one pitch class by one semitone.

¹Douthett, J., Steinbach, P., Journal of Music Theory, 42(2), 1998, pp. 241–263. // Cohn, R. 'Audacious Euphony: Chromaticism and the Triad's Second Nature', Oxford University Press, 2012

Parsimonious graphs on triads for Douthett's and Steinbach's P_{m,n} relations

https://alexpof.github.io/interactive_mathmusic/Pmn_graphs/pmn_graphs.html

Select chords to display:

Major / Minor chords

- Major / Minor / Augmented chords
- Major / Minor / Augmented / Sus4 chords

Select P_{m,n} relations to display:

P_{1,0}
P_{0,1}

P_{1,1}

- P_{2,0}
- P_{0,2}
- P_{2,1}
- P_{1,2}

Two triads are said to be P_{m,n}-related if *m* pitch classes move by a semitone, while *n* pitch classes move by a whole

tone, the rest of the pitch classes being identical.

Based on the original paper of Douthett and Steinbach : Douthett, Jack, and Peter Steinbach. 1998. "Parsimonious Graphs: A Study in Parsimony, Contextual Transformations, and Modes of Limited Transposition." Journal of Music Theory 42 (2): 241–263.

Visualization and code by Alexandre Popoff. Best viewed with Chrome or Firefox. Compatibility with Internet Explorer and Microsoft Edge is not guaranteed.

Jack Douthett

Alexandre Popoff

¹Douthett, J., Steinbach, P., Journal of Music Theory, 42(2), 1998, pp. 241–263. // Cohn, R. 'Audacious Euphony: Chromaticism and the Triad's Second Nature', Oxford University Press, 2012

Parsimonious graphs on triads for Douthett's and Steinbach's Pmn relations

→ https://alexpof.github.io/interactive mathmusic/Pmn graphs/pmn graphs.html

Select chords to display:

Maior / Minor chords

- Major / Minor / Augmented chords
- Major / Minor / Augmented / Sus4 chords

Select P _{m,}	n relations	to display:
------------------------	-------------	-------------

- P₂₀
- P_{0.2}
- P_{2.1}
- P12

Two triads are said to be Pmn-related if *m* pitch classes move by a semitone, while *n* pitch classes move by a whole

tone, the rest of the pitch classes being identical.

Based on the original paper of Douthett and Steinbach : Douthett, Jack, and Peter Steinbach, 1998, "Parsimonious Graphs: A Study in Parsimony, Contextual Transformations, and Modes of Limited Transposition." Journal of Music Theory 42 (2): 241-263.

Visualization and code by Alexandre Popoff. Best viewed with Chrome or Firefox. Compatibility with Internet Explorer and Microsoft Edge is not guaranteed.

Jack Douthett

Alexandre Popoff

pitch class by one semitone. ¹Douthett, J., Steinbach, P., Journal of Music Theory, 42(2), 1998, pp. 241–263. // Cohn, R. 'Audacious Euphony: Chromaticism and

the Triad's Second Nature', Oxford University Press, 2012

Parsimonious graphs on triads for Douthett's and Steinbach's P_{m,n} relations

https://alexpof.github.io/interactive_mathmusic/Pmn_graphs/pmn_graphs.html

Select chords to display:

Major / Minor chords

- Major / Minor / Augmented chords
- Major / Minor / Augmented / Sus4 chords

Select P_{m,n} relations to display:

*P*_{1,0}
*P*_{0,1}

P_{1,1}

P_{2.0}

P_{0,2}

P_{2.1}

P₁₂

Add chords to the progression by shift-clicking on the nodes.

Two triads are said to be $P_{m,n}$ -related if *m* pitch classes move by a semitone, while *n* pitch classes move by a whole tone, the rest of the pitch classes being identical.

Based on the original paper of Douthett and Steinbach : Douthett, Jack, and Peter Steinbach. 1998. "Parsimonious Graphs: A Study in Parsimony, Contextual Transformations, and Modes of Limited Transposition." Journal of Music Theory 42 (2): 241–263.

Visualization and code by Alexandre Popoff. Best viewed with Chrome or Firefox. Compatibility with Internet Explorer and Microsoft Edge is not guaranteed.

Jack Douthett

Alexandre Popoff

The $\mathcal{P}_{1,0}$ binary relation connects two chords if they differ by the movement of only one pitch class by one semitone.

¹Douthett, J., Steinbach, P., Journal of Music Theory, 42(2), 1998, pp. 241–263. // Cohn, R. 'Audacious Euphony: Chromaticism and the Triad's Second Nature', Oxford University Press, 2012

Composing with Hamiltonian Cycles in the 'classical' Cube Dance

The three Hamiltonian Cycles ($C_M = C, C_m = Cm, C_{aug} = C+$)

The Gunner's dream (R. Waters, 1983 / M. Andreatta, 2018)

С C+ Floating down through the clouds Memories come rushing up to meet me now. Fm In the space between the heavens C#m and in the corner of some foreign field F+ Bbm I had a dream. F# F#m D Dm I had a dream. Bb Good-bye Max. D+ Good-bye Ma. Ebm After the service when you're walking slowly to the car Bm And the silver in her hair shines in the cold November air

Gm

You hear the tolling bell Eb And touch the silk in your lapel G+ Em E G#m And as the tear drops rise to meet the comfort of the band G# Cm You take her frail hand

And hold on to the dream.

C-->C+-->Am-->F-->Fm-->C#-->C#m-->A-->F+-->Bbm-->F#-->F#m-->D-->Dm-->Bb-->D+-->Ebm-->B-->Bm--> -->G-->Gm-->Eb-->G+-->Em-->E-->G#m-->G#-->C

C-->C+-->Am-->F-->Fm-->C#-->C#m-->A-->F+-->F#m-->F#-->Bbm-->Bb-->Dm-->D-->D+-->Ebm-->B-->Bm--> -->G-->Gm-->Eb-->G+-->Em-->E-->G#m-->G#-->C

C-->C+-->Am-->F-->Fm-->C#-->C#m-->A-->F+-->F#m-->D-->Dm-->Bb-->Bbm-->F#-->D+-->Ebm-->B-->Bm--> -->G-->Gm-->Eb-->G+-->Cm-->G#-->G#m-->E-->Em-->C

Composing with Hamiltonian Cycles in the 'classical' Cube Dance

The three Hamiltonian Cycles ($C_M = C, C_m = Cm, C_{aug} = C+$)

C-->C+-->Am-->F-->Fm-->C#-->C#m-->A-->F+-->Bbm-->F#-->F#m-->D-->Dm-->Bb-->D+-->Ebm-->B-->Bm--> -->G-->Gm-->Eb-->G+-->Em-->E-->G#m-->G#-->Cm-->C

C-->C+-->Am-->F-->Fm-->C#-->C#m-->A-->F+-->F#m-->F#-->Bbm-->Bb-->Dm-->D-->D+-->Ebm-->B-->Bm--> -->G-->Gm-->Eb-->G+-->Em-->E-->G#m-->G#-->C

C-->C+-->Am-->F-->Fm-->C#-->C#m-->A-->F+-->F#m-->D-->Dm-->Bb-->Bbm-->F#-->D+-->Ebm-->B-->Bm--> -->G-->Gm-->Eb-->G+-->Cm-->G#-->G#m-->E-->Em-->C Hamiltionan Dream

Moreno Andreatta Gilles Baroin 2021

→ See you at the concert tribute to Jack Douthett (Thursday Evening)

Tonnetz versus Cube Dance Analysis for Muse's Take a bow

Muse - Take A Bow (Tonnetz harmonic analysis)

YouTube

30,364 views Jan 20, 2016 Harmonic analysis of the song Take A Bow composed by Matthew Bellamy performed by Muse.

Two analytical approaches to Muse's Take a bow

First analytical approach: U-U-P cycle

▶ Second analytical approach: transpositions by fourth of the first cell

Definition 1 Let C be a category, and S a functor from C to the category Sets. Let Δ be a small category and R a functor from Δ to Sets. A PK-net of form R and of support S is a 4-tuple (R, S, F, ϕ) , in which

- F is a functor from Δ to C,
- and ϕ is a natural transformation from R to SF.

The definition of a PK-net is summed up by the following diagram:

Popoff A., M. Andreatta, A. Ehresmann, « A Categorical Generalization of Klumpenhouwer Networks », MCM 2015, Queen Mary University, Springer, p. 303-314

From the Cube Dance to the colored Cube Dance

Refining the $\mathcal{P}_{1,0}$ relation: the 'Colored Cube Dance'

- \blacktriangleright We consider three sub-relations of $\mathcal{P}_{1,0}$ named \mathcal{U} , \mathcal{P} , and \mathcal{L}
- The relations \mathcal{P} and \mathcal{L} coincide on major and minor chords with the usual neo-Riemannian operations.

A 'weak' algebraic structure

The $M_{\mathcal{U},\mathcal{P},\mathcal{L}}$ monoid

The monoid $M_{\mathcal{U},\mathcal{P},\mathcal{L}}$ generated by \mathcal{U} , \mathcal{P} , and \mathcal{L} contains 40 elements and has for presentation

$$M_{\mathcal{U},\mathcal{P},\mathcal{L}} = \langle \mathcal{U}, \mathcal{P}, \mathcal{L} \mid \mathcal{P}^2 = \mathcal{L}^2 = e, \quad \mathcal{LPL} = \mathcal{PLP}, \quad \mathcal{U}^3 = \mathcal{U}, \\ \mathcal{UP} = \mathcal{UL}, \quad \mathcal{PU} = \mathcal{LU}, \quad \mathcal{U}^2 \mathcal{P} \mathcal{U}^2 = \mathcal{P} \mathcal{U}^2 \mathcal{P} \mathcal{U}^2 \mathcal{P}, \\ (\mathcal{UP})^2 \mathcal{U}^2 = \mathcal{P} (\mathcal{UP})^2 \mathcal{U}^2 \mathcal{P}, \quad \mathcal{U}^2 (\mathcal{PU})^2 = \mathcal{P} \mathcal{U}^2 (\mathcal{PU})^2 \mathcal{P} \rangle$$

The algebraic set-up: relational PK-nets

Automorphisms of the $M_{\mathcal{U},\mathcal{P},\mathcal{L}}$ action

Transposition by fourth is a special example of an automorphism of the action of $M_{\mathcal{U},\mathcal{P},\mathcal{L}}$ on the set X of major, minor, and augmented triads.

Definition

The automorphism group A of the action of $M_{\mathcal{U},\mathcal{P},\mathcal{L}}$ on X is the group of pairs (N,ν) where

- \triangleright $N: M_{\mathcal{U},\mathcal{P},\mathcal{L}} \rightarrow M_{\mathcal{U},\mathcal{P},\mathcal{L}}$ is an automorphism, and
- \blacktriangleright u is a bijection on X, such that
- ▶ we have $p\mathcal{R}q \implies \nu(p)N(\mathcal{R})\nu(q)$ for all $\mathcal{R} \in M_{\mathcal{U},\mathcal{P},\mathcal{L}}$ and $(p,q) \in X^2$.

Composition is done term-wise.²

> Problem: can we determine the structure of A ?

The algebraic set-up: relational PK-nets

Automorphisms of the $M_{\mathcal{U},\mathcal{P},\mathcal{L}}$ action

Transposition by fourth is a special example of an automorphism of the action of $M_{\mathcal{U},\mathcal{P},\mathcal{L}}$ on the set X of major, minor, and augmented triads.

Definition

The automorphism group A of the action of $M_{\mathcal{U},\mathcal{P},\mathcal{L}}$ on X is the group of pairs (N,ν) where

- \triangleright $N: M_{\mathcal{U},\mathcal{P},\mathcal{L}} \rightarrow M_{\mathcal{U},\mathcal{P},\mathcal{L}}$ is an automorphism, and
- \blacktriangleright u is a bijection on X, such that
- ▶ we have $p\mathcal{R}q \implies \nu(p)N(\mathcal{R})\nu(q)$ for all $\mathcal{R} \in M_{\mathcal{U},\mathcal{P},\mathcal{L}}$ and $(p,q) \in X^2$.

Composition is done term-wise.²

> Problem: can we determine the structure of A ?

²For the more general definition of the automorphism group of a functor $S: M \rightarrow \mathbf{Rel}$, see Popoff, A., Andreatta, M., Ehresmann, A. 'Relational poly-Klumpenhouwer networks for transformational and voice-leading analysis.' J. Math. Music, 12(1), 2018, pp. 35–55

The algebraic set-up: relational PK-nets

Automorphisms of the $M_{\mathcal{U},\mathcal{P},\mathcal{L}}$ action

Theorem

The automorphism group A of the action of $M_{\mathcal{U},\mathcal{P},\mathcal{L}}$ on X is a group of order 7776 isomorphic to $(\mathbb{Z}_3^4 \rtimes D_8) \rtimes (D_6 \times \mathbb{Z}_2)$.

- ▶ The group $D_6 \times \mathbb{Z}_2$ corresponds to the automorphisms N of the monoid $M_{\mathcal{U},\mathcal{P},\mathcal{L}}$ itself.
 - \triangleright D_6 corresponds to the automorphisms of the subgroup generated by ${\cal P}$ and ${\cal L}$.
 - \triangleright \mathbb{Z}_2 corresponds to the image of \mathcal{U} which can be either \mathcal{U} or \mathcal{LUL} .
- The complete structure of A is determined by the careful enumeration of the possible bijections $\nu: X \to X$.

Graphical representation of the possible automorphisms

Automorphisms of the $M_{\mathcal{U},\mathcal{P},\mathcal{L}}$ action

The g_i are elements of the subgroup generated by \mathcal{PL} (isomorphic to \mathbb{Z}_3).

(see Table 1)

Composing (with) automorphisms

- ▶ The group $A \cong (\mathbb{Z}_3^4 \rtimes D_8) \rtimes (D_6 \times \mathbb{Z}_2)$ is too complex to be easily manipulated by hand.
- \blacktriangleright We developed an interactive interface intended for mathemusicians and composers for transforming chord progressions using elements of A.
- ► HTML/SVG (graphical elements) and Javascript (code) allows one to develop complex interfaces for outreach activities. No installation needed !

Composing (with) automorphisms

- ▶ The group $A \cong (\mathbb{Z}_3^4 \rtimes D_8) \rtimes (D_6 \times \mathbb{Z}_2)$ is too complex to be easily manipulated by hand.
- We developed an interactive interface intended for mathemusicians and composers for transforming chord progressions using elements of A.
- ► HTML/SVG (graphical elements) and Javascript (code) allows one to develop complex interfaces for outreach activities. No installation needed !

Add to list

Thank you for your attention!

3