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Abstract

We present computer models of two works for solo instru-
ment by lannis Xenakis: Herma for piano (1962) and Nomos
Alpha for cello (1965). Both works were described by the
composer (in his book Formalized Music) as examples of
“symbolic music.” Xenakis’ detailed description of formal
aspects in his compositional process makes it possible to
implement computer models that recreate essential elements
of the final scores. For our implementations, we use OPEN-
MUSIC, a visual programming language based on Common-
Lisp/CLOS developed at Ircam. Based on the experiences
gathered from developing and exploring these computer
models, we discuss the theoretical concepts used by Xenakis
in his creative process. Further, we examine how the alge-
braic organization of Nomos Alpha can be considered as an
abstraction of the set-theoretical one used in Herma. We
finally suggest to extend Xenakis® outside-of-timelin-time
dichotomy by means of a third conceptual category: the
“logical time.”

1. Introduction

lannis Xenakis is known as an extremely original and pro-
lific composer, the author of masterpieces that had a pro-
found impact on the music of his time, and the proponent of
a number of novel approaches to musical composition. A
trained engineer, having closely collaborated with the archi-
tect Le Corbusier, Xenakis was particularly fascinated by
science and, more specifically, by mathematics. His lifelong
interest in these matters deeply influenced his approach to
musical composition, so much so that formal/mathematical
considerations represent an integral part of his creative
process. In the middle of the 1950s, he started with stochastic
music, using probability distributions to shape large masses

of sounds, and later applied aspects of game theory to music.
By the end of the 1950s, he turned to algebra and logic. He
called symbolic music the body of musical works that
resulted from the latter approach.

Herma, for piano, and Nomos Alpha, for cello, are two
such examples. Both are nowadays considered masterpieces
and have become part of the repertoire of many pianists and
cellists. These works were chosen as the subject of our study
because of the wealth of details provided by Xenakis in his
a-priori theoretical description of these compositions.

Xenakis has published numerous commentaries on his
own musical output. For him, each one of his works “poses
a logical or philosophical thesis™ (Bois, 1966, p. 14). With
Herma and Nomos Alpha, we have two such “theses” of equal
relevance, who can only be analyzed within a more general
discussion on Xenakis® symbolic music (Andreatta, 1997).
As pointed out by the composer in his long interview with
Balint Varga (Varga, 1996), there is a thread linking Herma
to Nomos Alpha, having mainly to do with their formal orga-
nization. However, while in Herma the composer used amor-
phous sets, the relationships between them only depending
on external set-theoretical operations (inclusion, intersection,
union, complement, etc.), in the cello piece he used struc-
tured sets, i.e. collections of elements together with a binary
operation such that the group axioms are satisfied.' Most of

"Let us recall that a group 1s a set G of elements together with a
binary operation (written as -) such that the four following proper-
ties are satisfied: (1) closure: a-b belongs to G for all ¢ and b in G:
(2) associativity: (a-b)-c = a-(b-¢) for all a. b, ¢ belonging to G;
(3) idenriy: there exists a unique element ¢ in G such that
are=e-a=aforall ain G; (4) inversion: for each element ¢ in G
there exists a unique element ¢’ in G such that a ¢’ = o’ -a1 = ¢.
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Xenakis’ theoretical constructions are documented in his
book Formalized Music (Xenakis, 1992), where the discus-
sion of Herma and Nomos Alpha (Chapters 5 and 6, respec-
tively) ranges among the most comprehensive and detailed
ones. Indeed, Xenakis” own description of these two pieces
is close to providing formal models of their scores. Thus,
based on his discussion, one can attempt to elaborate a com-
puter program that re-creates essential parts of the musical
score. The present paper is the account of such an attempt,
and provides a discussion of the results thus obtained.

In order to clarify our object of study, a few comments
should be made concerning the nature itself of Xenakis’ the-
oretical descriptions. An important difference exists between
the reconstruction of a score by implementing the composer’s
model for that score, and what is usually meant by “music
analysis.” While a strict definition of the latter cannot be pro-
vided here, let us just emphasize that the two do not neces-
sarily meet. The composer can, for instance, introduce layers
of analyzable and pertinent structure without necessarily
being aware of it. Conversely, what the composer considers
as pertinent might very well be entirely lost in the final result,
either at the score level or at the level of the reception of the
work. The latter is particularly the case with Xenakis, as will
become evident later. To scrutinize his formal models is
to analyze a specific — and important — part of his creative
process. We believe that such considerations are pertinent in
an actual analysis, yet such a claim is not the object of the
present article. Rather, it is an insight into the composer’s
creative process that is primarily sought here.

To transcribe the compositional process into computer
models is to adopt a particular perspective on Xenakis’ the-
oretical discussion and its implications. Indeed, greater atten-
tion must be given to the strictly operational level, the one at
which the actual transposition from the composer’s specula-
tive considerations about symbolic music into actual musical
output is realized. The broader implications of these “mech-
anisms” and their musical relevance will be the focus of
the next two sections, bearing on the composition of Herma,
and subsequently on Nomos Alpha. In a later section, the
processes relative to those two works will be brought together
into a common perspective. Despite some crucial differences
between the two pieces, the respective formal aspects reveal
a number of common features. In addition, the compositional
process behind Nomos Alpha seems to feature a higher level
of abstraction compared with Herma. We also discuss the
importance of the implementation with respect to this point,
and suggest further developments of our computational
approach.

2. Herma
2.1. The theoretical framework
2.1.1. The basic material

Xenakis describes Herma as a presentation in “sonorous
symbols” — instead of “graphic symbols™ — of three pitch sets

Fig. 1. The Venn diagram of the set £

together with the basic set operations, namely union (denoted
as “+7), intersection (denoted as “-”) and complementation
(denoted by the superscript “ ). First, the composer consid-
ers a “referential set” that he calls R, “consisting of all the
sounds of a piano” (Xenakis, 1992, p. 170). He then selects
three pitch sets A, B and C among the elements of R. Now,
these three sets, plus the reference set and their combinator-
ial potential constitute the basic material of the piece. With
the well-known terminology introduced by Xenakis himself,
this material clearly belongs to the outside-of-time domain.*
The way this material will unfold in time is not yet specified.
To avoid too much arbitrariness, Xenakis introduces what
he calls a “knot of interest” (Xenakis, 1992, p. 173) and adds
two organizational elements to his construction: The first, is
a “finality,” i.e. the aim towards which the entire piece should
be oriented and that will constitute the final section. This set
— that Xenakis calls F — is denoted as the black area in the
Venn diagram of Figure 1.

The second element is a selection principle, such that
among all sets that could possibly result, only a limited
number is selected, together with a first embryo of its in-tine
organization. To this end, Xenakis notes that the set F can be
algebraically expressed in two ways, as follows:

F=(A-B+A-B)-C+(A-B+A-B)-C

and

F=A-B-C+A-B-C+A-B-C+A-B-C

*The outside-of-time refers to any aspect of a work of music that
can be formalized independently of time. Any other aspect, partic-
ularly if dependent on the time flow, belongs to the in-fime domain.
A 12-tone row, considered in its pre-compositional, theoretical
state, is outside-of-time (although the composer seems to suggest
the opposite), while a particular instance of this series in a score is
in-time.
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Fig. 2. (a,b) Flow chart of operations.

For each representation he draws a diagram of operations
which, starting from sets 4, B and C, outlines the sequence
of the set-theoretic operations to apply in order to obtain
the set F* (Figure 2a and 2b). These diagrams can be equiva-
lently described as determining specific series of sets. Each
element of a given series is the result of one, and only one,
set-theoretic operation either applied on sets that have
appeared previously in the series, or applied directly on sets
A, BorC.

2.1.2. The "“construction” of the piece

From this point on, Xenakis enters what can be called the
construction of the work, in the sense that he does not impose

on himself any constraint of a “formal” nature anymore,
Indeed, he observes that the first diagram is “more econom-
ical” while the second presents “more elegant symmetries,”
and finally takes the decision to work out his composition
based on a “confrontation” between the two (Xenakis, 1992,
p. 175).

To this aim, he defines two layers of different dynamics:
I and £ for the one diagram; ff and ppp for the other. Each
layer will carry a different sequence unfolding in parallel
(Figure 3) and reaching set F' “simultancously” at the end of
the piece. Each layer is itself divided into two sub-layers,
again according to dynamics. One sub-layer (fff and ff)
carries mutually disjoint sets whose union results in set /' In
mathematical terminology. these sub-layers constitute a par-
tition of the set F. The other sub-layer ( fand ppp) carries all
the remaining, intermediary sets, imposed by the sequence
of operations illustrated by the diagram in Figure 3.

With this procedure, Xenakis has already left the outside-
of-time domain in its strictest sense. The sequences thus
obtained, however, are not yet sufficient to concretely deter-
mine the elements of his score. In order to achieve a transi-
tion he introduces two new elements, each corresponding to
techniques he used extensively in previous works: the orga-
nization of the overall form by means of a graph. and the
stochastic selection of elements.

The graph, with the four layers on the y-axis and time on
the x-axis, specifies the relative position together with a time
span during which a particular set is deployed. A short exam-
ination reveals three clearly distinguishable sections. In the
first, the sets R, 4, Ac, B, Be, C and Cc are presented, in that
particular order, providing an “exposition” of the main ele-
ments. In a second section, the two paralle] series of sets are
presented, as determined by the graph in Figure 2. This can
be considered as the “development” section of the piece. The
last part functions as a conclusive musical formula, and
features the elements of the final set F.

2.1.3. The stochastic elements

Xenakis also describes how the sets are “transcribed” from
their amorphous outside-of-time state into a specific in-time
succession of pitches by stating that “there exists a stochastic
correspondence between the pitch components and moments
of occurrence” (Xenakis, 1992, p. 175). Although this
could resemble a return to the techniques of stochastic
music, Xenakis insists on distinguishing it. He explains
that the stochastic elements in the composition of Herma
solely serve the purpose of “demonstrating the elements of
the sets” (Varga, 1996, p. 85) as opposed to being a means
to “sculpting” sound masses. In other words, the introduc-
tion of randomness in the composition of Herma enables
the transfer of the sets into the in-fime domain, and at the
same time rules out the emergence of any audible regularity
that would contradict their amorphous (i.e. unstructured)
nature. .
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Fig. 3. Flow chart of the layered series.

In conjunction with this stochastic element, Xenakis also
introduces contrasting “densities.” For each occurrence of a
given set, its density is stipulated in the in-time flow chart
(Figure 4). In addition, Xenakis also distinguishes between
two modes in the sonic manifestation of sets. He names them
“cloud” and “linear,” but does not clarify how exactly these
terms should be interpreted. Another even more important
point he does not clarify is the one concerning the type of
probability distribution used for the duration values as well
as for the pitch selection.

In reading Xenakis’ description of Herma, one gets the
impression that his aim is to describe the piece entirely in
theoretical terms, disregarding the actual preparation of the
score. The next section focuses on the transcription of
the composer’s theory into a computer program. Several
hypotheses had to be made and tested concerning the details
of the stochastic aspects, before an “optimal” solution could
be found. The resulting computer-generated “sonorous
equivalent” of the theory provides a basis for discussing the
extent to which Herma can be considered as a direct outcome
of Xenakis’ theoretical framework.

2.2. The computer implementation
2.2.1. Some general aspects

Models of sequentiality in music are generally partial
orders represented by lattices showing temporal logic

*In Xenakis’ terminology, a density corresponds to a mean value,
that is, an average number of events per unit of time, and not to the
more technical notion of “probability density function.”
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relations between musical units. Let us call logical time
(Assayag, 2000) this particular representation level in
the composition process. In Herma, the logical time
structure is partly revealed by the chart in Figure 3. The
in-time structure shown in Figure 4 is one of the many
possible in-time manifestations. It is interesting to note
that Xenakis finds it necessary to exhibit a logical time
chart, clearly an intermediate between the outside-of-time
and the in-time instances, while not explicitly identifying
this logical time category in his paper. Nevertheless, it is
precisely on this dichotomy between logical time and in-
fime instances that we have built our implementation of the
model.

2.2.2. The “maquette” and the temporal blocks in
OPENMUSIC

The implementation has been realized in the OPENMUSIC
environment, a visual programming language for composers
and musicologists developed at Ircam. For the encoding of
Herma, a maquette object was used, that is, a container that
displays information concerning different levels of temporal
organization. At any of these levels, visual encoding of
instructions is available. A recursive container structure,
enabling the embedding of substructures into larger musical
forms, is also possible, but this feature was not necessary for
our purposes, here. Figure 5 shows the maquette corre-
sponding to Herma. In essence, this maquette reproduces the
temporal flow chart provided by the composer (however, set
R — the beginning of the piece — was omitted). The rectangle
blocks (called temporal blocks in OPENMUSIC) represent the
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Fig. 5. The maquette of Herma.
sets, and the four layers correspond to those chosen by pattern of threads reflects the flow of information inherent in
Xenakis. Xenakis’ construction. Sets built earlier in the process are
A deeper look into the construction reveals the connec- used again later for the computation of new sets. This idea is

tions between the various blocks (see Figure 6). Here, the . summarized in the flow charts shown in Figure 2, which are
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Fig. 6. Connection patterns in the maquette.

then only shaped as a logical time structure in Figure 3.*
However, the pattern of threads also reflects a purely prag-
matic goal: it allows us to avoid the redundancy of repre-
senting two separate series leading to the final set /7, and that
saves computation time.’

Figure 7 shows the typical content of a temporal block.
This construct, called a patch in OPENMUSIC, is actually the
equivalent of a computer program. It is encoded using visual
rather than text code. The input arrow in the upper right
corner represents the input data. In the case of Herma, the
input data include the sets built up in previous blocks, needed
to determine the set that will be active throughout the tem-
poral block. The particular set operations utilized appear
next. The other patch icons represent abstractions for other
visual subprograms (not shown) aimed at determining, in
accordance with a given density value, the selection of
pitches within the considered set and their onset times. In
short the subprograms govern the stochastic part of Xenakis’
construction.

2.2.3. The selection of probability distribution

As pointed out earlier, there is little information provided by
the composer concerning the stochastic aspects. For dura-
tions, we have chosen the exponential probability function,
which is commonly used in modeling all kind of events hap-
pening at random time intervals with an average density (a

*Some of the arrows in Xenakis’ chart depicted in Figure 3 cannot
be explained as precedence relations in a logical time structure.
Their meaning is actually a mystery. Any suggestions would be
welcome!

5 Accordingly, the particular set of connections used in the imple-
mentation is not the only possible one.

typical example is the average time at which customers arrive
at a counter). Considering that Xenakis had frequently uti-
lized the exponential probability function for some of his
earlier compositions, this lends itself quite naturally. The raw
output of this probability function, however, requires an addi-
tional computation step. Indeed, events close together need
to be aligned into “chords,” and one should adopt a time
granularity fitting with the complexity of the rhythms found
in the music while eliminating the strictly continuous char-
acter of the raw output.

Our choice of the ArcSin distribution for the selection of
pitches was of a more speculative nature, compared with the
exponential distribution. Its density curve is flat in the middle
and increases in both outer ranges, thus roughly emulating
the position of a musician’s hands. As with the time granu-
larity mentioned above, the choice of the probability distrib-
ution governing the pitch was a matter of trial and error
experimentation, until we ended up with a result reflecting
the particular “physiognomy” of Herma.

The stochastic element in Xenakis’ construction implies
that each evaluation of the model yields a new manifestation
in the pitch/intensity/time domain. It is safe to say that
every instance bears a definite resemblance with the original
Herma. The masses of sound, the long stretches of silence,
the overall shape of the piece are all quite faithfully rendered.
Yet the “impetus” so peculiar of the original work is clearly
lost in the computer model. This leads to the question of
whether any objective element can be found to corroborate
this inherently subjective observation.

2.3. The “gap” between theoretical construction and
musical realization

Two assumptions can be made, concerning the qualitative
difference observed above. First, the “human touch” is of
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course missing in the computer version, even though — in
an attempt at humanizing the final result — we had the
intensity levels modulated by a normal (Gaussian) distribu-
tion centered around the main intensity. Second, despite
the effort put in carefully choosing the probability functions,
the chosen functions might not be close enough to Xenakis’
own. Both assumptions remain, of course, open to further
discussion. However, we should also address ourselves
to another point: a closer look at the score reveals that
Xenakis made “corrections,” deviating from the theory at

several levels. In particular, we focus on two occurrences of
these.

2.3.1. Interventions in the stochastic process

The passages at bars 30-31 and 136138 are overtly in sharp
contrast to the rest of the score. The one has almost a dia-
tonic character. The other is a pianissimo buildup of held
notes leading into the harmony of bar 138. In both cases,
there is a sort of respite in the music’s activity that contra-
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dicts the stochastic deployment of pitches. The former
passage marks the end in the “exposition” of the reference
set (bars 1-29). The latter marks the end of the complete first
section in the piece (bars 1-132). Thus, both passages appear
at special transition points in the development of the overall
musical form. Tt seems quite clear that Xenakis has allowed
himself to intervene in the stochastic mechanism in order to
emphasize these articulations in the musical form.

Two more details add to this evidence. In the passage
eventually leading to bar 136, the amount of pitches per
unit of time increases, yet Xenakis’ temporal flow chart
does not stipulate such a “density crescendo.” Moreover,
Xenakis gives a clear direction to the pitch sequence:
starting with bar 124, notes are first comprised within a
relatively narrow pitch range, less than two octaves; then
pitches shift towards the lower range, then move back
upwards and finally broaden in their range before bar 136.
This overall gesture, clearly “sculpting” the flow of pitches,
is reminiscent of passages found in Xenakis stochastic
works, an aspect which is not accounted for in the theoreti-
cal description of Herma.

2.3.2. Interventions in the selection of pitches

Several commentators have pointed out that some of the
pitches found in the score are foreign to the sets stipulated
by the composer (Bayer, 1981; Gibson, 1994; Montague,
1995; Schaub, 2001; Wanamaker, 2001). Tn his detailed
analysis, Bayer (1981) was the first to make such findings
public. He suggested that, in some cases, such “corrections”
are due to the fact that certain sets prescribed by the theory
are too poor to “sustain” the musical flow. Indeed, for a set
to be presented over an extended time span, with a relatively
high density, it should include a large number of pitches as
to avoid an undesired “stall” in the unfolding of the music.
This is not enough to explain all of the exceptions found in
the score, but it certainly applies to some passages.

For instance, a passage featuring quite a large number of
such exceptions can be found in bars 167-172. According to
the theory, about 80 pitches are supposed to be deployed
here, but the set stipulated in the theory contains only 18
pitches, of which several are octave doublings (pitch classes
C, C#, Eb, Bb, and B are not featured at all). To strictly obey
the theory would imply numerous pitch repetitions naturally
leading to the “stall” effect mentioned above.

Such observations provide a plausible, albeit partial,
explanation of the shortfalls of the computer model in ren-
dering the original score. Clearly, no refinement of the dis-
tribution could by itself reproduce the above mentioned
“corrections.” However, it would not be impossible to return
to the computer model with the aim to “correct” it. The
OPENMUSIC environment could easily allow us to introduce
the additional constraints required. To do so, though, we
would need a change of perspective, as the computer model
would no longer be a reflection of Xenakis® theoretical
description.

3. Nomos Alpha
3.1. The formal compositional process

Nomos Alpha is probably one of the most analyzed works
in contemporary music. At the present there are at least
four lengthy analyses (DeLio, 1980: Solomos, 1993:
Vandenbogaerde, 1968; Vriend, 1981 ). To this list we may
also add the composer’s detailed description, in his book For-
malized Music (Chapter 8, “Toward a Philosophy of Music”).
The special length of these analyses can be viewed as a
symptom of the difficulties found in the attempt to summa-
rize the questions raised by this piece in few pages. Never-
theless, it seems not useless to offer the reader a concise
discussion of mathematical aspects not developed in previ-
ous studies, and to draw some conclusions based on our
implementation of the compositional process. We are aware
that, in doing so, we disregard important aspects that resist
formalization, as the sieve-theoretical pitch organization, and
the question of the so-called “kinematic diagrams™ by which
Xenakis supposedly determined pitch-regions and playing
techniques (pizzicati, battuto col legno, pizzicati glissandi,
ete.).®

As already mentioned, we are interested in a more general
issue, namely the process of abstraction leading from the
amorphous sets of Herma to the more complex algebraic
structures of Nomos Alpha. The group-theoretical conception
behind the latter work utilizes mathematical group structures
in two ways: (1) as an organizing principle for what Xenakis
calls “sound complexes;” and (2) as the theoretical back-
ground in the construction of musical scales by means of the
so-called “sieves.”

3.1.1. Abstract (or outside-of-time) sound complexes

Figure 8 illustrates the eight prototypical “sound complexes”
as described and graphically represented by Xenakis himself,
The order of sound complexes is provided by means of a
mathematical group, in this case the 24 rotations that trans-
form a cube into itself. The eight sound complexes are
attached to the eight vertices of the cube, such that every
single rotation determines a permutation of the order of the
sound complexes.”

*See Solomos (1993) for a discussion of these issues.

"We quickly discuss the way in which an element of the group of
rotations determines a specific sequence of sound complexes. This
is made possible by taking a reference cube (which is, in fact, the
unitary element of the group) that provides the initial association
between sound complexes and vertices. A rotation induces a per-
mutation of the vertices of the reference cube, hence a particular
sequence of sound complexes. Moreover, a given group element
may be affected by a parameter (e, j3 or y) which changes its func-
tion along the piece. The previous labeling of sound complexes, for
example, only concerns the so-called 3 sections of the picce. We
will come back to the structural role of the parameters in the
discussion of the in-time process.
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Figure 9 shows the sequence of eight abstract sound com-
plexes attached to the group transformation D that has been
chosen as the starting point for the piece. Thanks to the group
property, any combination of two elements remains in the set
of rotations. In other words, the product of two rotations is
still a rotation, as shown in the group table illustrated in
Figure 10.

3.1.2. The generalized Fibonacci process

The closure axiom, together with the fact that the group of
rotations 1s finite, enables the construction of Fibonacci
sequences of rotations (Xenakis did not call them such, but
we prefer to remain consistent with the mathematical termi-
nology). The latter turn out to have a cyclic character. Indeed,
selecting two given elements x, and x, of the group and
applying the group operation “ we obtain a sequence of
terms X3, Xy, . .., X; Where X3 = X3 Xy, X4 = X3°Xa, .
x;-x;y. That is, each element in the sequence (each rotation)
is the product of the two previous ones, just as each term in
a Fibonacci sequence of integers is the sum of the two
previous terms.

ces Xy =

£ a B c p | pz | E [ E2 G | 62 | L | L2 | 01 | p2 | o3 | 04 |05 | 06 | o7 | p8 | po | p10 | p11 | 012
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a a 1 c B G L | 62 | r2 D E | D2 | E2 | 97 | 04 | 95 | 92 | 93 [p12]| o1 |p10|p11| o8 | 9o | o6
B B c I A |2 | E | D2 G | E2 | L |62 | D |06 | 09 | o8 [p11|p10| 01 |12 o3 | o2 [ o5 | 0a | o7
c c B A I | E2 |62 | o p | 12 [p2 | E G |912 | p11 | 010 | o9 | o8 | 07 | o6 | o5 | 02 | o3 | o2 | 01
D D L2 | E2 G D2 I c L E A B G2 | 03 | 96 | p2 | p1 |p11[o010) 08 | 99 | o7 | 92 | p12| o5
D2 D2 | @2 L E I D G B ¢ |12 | E2 | A |02 |ol0| o1 | 03 |012| p2 | 09 | 07 | 08 | 06 | p5 | p11
E E L |62 | D2 | B |12 | E2 1 A D G c |e11| o5 | o6 | 08 | o7 | 09 | 92 |p12| o3 | o1 | pi0 | o4
E2 E2 G p | 2 | a2 c I E L B A | D2 |010| 97 | o5 | o012 | 02 | o3 | 05 | o4 | p6 |pi1i]| o1 | o8
G ¢ | E2 [ 2 | D £ A B | b2 | &2 b c E || o5 |12 | o2 | o7 | 99 | 08 |pio|p11| o1 | 02 | 96 | o3
G2 G2 | b2 | E L c | E2 | 12 A I G D B | 09 | 03 |p12|p10]| o1 |11 | o2 | p6 | o5 | 07 | 98 | p2
L L E | p2 | G2 A G D c B | E2 | L2 T |92 | o8 | 07 | o5 | o6 | 04 | o011 | o1 [op10 | pi12| o3 | ps
L2 L2 D ¢ | E2 | E B A | 62 | p2 c I L | o8 | o1 |pi1| 06 | o2 [ o5 | p3 | 02 | o012 | 09 | o7 | pi0
o1 01 | 07 |o012| o6 | 09 | o5 | o8 | 02 |11 |o10| 03 [ 04 | A | z2 [ p2 | E2 | L B | a2 G E D ¢
02 02 |p11| 09 | o4 |10 | o6 | o1 | o8 | 93 |p12| o7 | o5 || E I G ¢ |2 |p2|  |E2| B D a | e2
03 03 | 08 | o5 |o10| o7 |p11| o9 | o6 [p12| 02 | o4 | 01 | L2 | G2 I L B | 2| D A E c | b2 G
04 o4 | po | p11] 02 [ o8 | p12| 07 |p10| o5 | 06 | o1 | 03 | @2 A D B | E2 L | b2 | L2 c G I E
o5 05 | p10| o3 | 08 | o1 | o9 |p11|p12| o6 | o2 | o2 | 97 | E2 | E a | b2 c | nz2 G I |ez | B L D
6 06 | 012 | o7 | o1 | 02 |p10| 03 | 09 [ 02 | o5 | @8 [p11] c D E ¢ | ez I B L | E2 | D2 |12 | A
07 07 | o1 | o6 [ p12|p11| 03 |p10| 02 [ o9 [ 08 | o5 [ o2 | x | ®E2 | = | 12 | D2 c A E p | G2 G B
08 08 | 03 | 010| o5 |12 | o4 | 02 | o1 | o7 | 99 | 911 | p6 D L B G2 I G L2 e D2 A E E2
09 09 | o4 | 02 [p11| o5 | 91 | o6 | 03 [ 08 | 07 | 012 | 010 | D2 B | E2| & D E | 62 G I 12| ¢ L
010 010 | o5 | 08 | 03 | 06 | 02 | o2 | o7 [ o1 [po11| po |012| & | D2 c E A p |E2 | B L I |ez | 12
p11 fp11 | 92 [ pa | 09 | 03 | 07 [p12| o5 |pi0 | o1 | p6 | 08 | L ¢ | L2 I ¢ |62 | E D a | E2 | B | D2
p12 |o12| o6 | o1 | 97 | o4 | o8 | o5 | 11| 02 [ o3 | 10| po | B ¢ |e2 | p E A ¢ | p2 |12 | L | E2 P

Fig. 10. Table of 24 rotations of the cube into itself (Xenakis™ own notation).
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Some mathematical properties of this generalized
Fibonacci process are of real interest, and may shed some
light on apparently arbitrary decisions made by the com-
poser. Firstly it turns out that this process always ends with
a loop. In other words, starting with two group elements X,
Y and constructing a sequence with the Fibonacci method,
we necessarily find the same elements Y, ¥ in the same order
after a finite number of steps. This shows the inherently cyclic
nature of the process, which strictly depends on the charac-
ter of the given group. Secondly, loops may have different
lengths, where Jength means the total number of iterations in
the Fibonaccei process that are necessary to end up with a
loop. It can be shown mathematically that the Fibonacci
process can never cover all 24 elements of the group: the
maximal length is 18 and the largest number of different ele-
ments inside a loop is 13. We will call this number the degree
of the loop. In other words, only 13 of the 24 group elements
may be selected by a Fibonacci process giving loops of
maximal length (18 iterations).

Xenakis makes use of the following loop, obtained by 18
iterations of the Fibonacci process (starting with elements D
and QI12):D - Q12504 >E—> Q08— Q2 > E2— Q7
—204=-D2-503504->12-507-502->L—08
=01l —.. 8

The overall structure of the piece can now be easily sum-
marized, taking the Fibonacci loop as the main skeleton, and
inserting non-structured sections (“intermezzi”) every third
loop element. We will not take into account the “intermezzi,”
for all authors agree that they are completely independent
from the group-theoretic mechanism (on the interrelation-
ship between these two layers in Nomos Alpha, see DeLio,
1985). Denoting the group transformations with X; (i = 1,
..., 18), and the “intermezzi” with /, the piece can be
segmented in the following way:

[(Xi= X, > X, L]=[X, 5 X, 5 X, > L]—...
= [Xys = X3 = Xig — 1]

3.1.3. Temporal (or in-time) sound complexes

It should be observed that the sound complexes associated to
the group elements have to be considered as outside-of-time
musical structures. They become in-time objects only when
three further parameters (density, intensity and duration) are
taken into account. Densities, intensities and durations in
each sound complex are determined by the group of rotations
of an auxiliary cube. As in the case of the abstract sound

¥ Xenakis seems to be interested in other loops as well, as he offers
their graphical representations (Xenakis, 1992, p. 225). This raises
the question concerning the relevance of a parametrized model of
this compositional process, where one may change the initial con-
ditions and explore the potentialities hidden in the system. We will
stress this point in the final section, discussing musicological impli-
cations of our model for Nomaos Alpha.

complexes, Xenakis makes use of an additional parameter (¢,
Bor ¥) in order to increase the variability of densities, inten-
sities and durations of the sound complexes. In other words,
there are eight musical objects (i.e., in-time sound com-
plexes) for each parameter, which gives 8 x 3 = 24 different
musical objects. Following Xenakis’ notation, we will denote
the latter with K. As in the case of abstract sound complexes,
Xenakis changes the parameter every third rotation, and does
so in a cyclic pattern: [f — y— « —  — y— a]. Observe
that this operation, too, can be considered in the light of
group theory. In fact, ¢, fand ycan be associated to the ver-
tices of a triangle; six successive rotations of 120° around the
center produce the cycle that provides the order of the dif-
ferent sections of the piece.

The table in Figure 11 lists the characteristics of the
musical objects K, as dependent on parameters ¢, Band y
(see Xenakis, 1992, p. 227). For example, if we consider the
first sound complex in the score of Nomos Alpha, which is
K, with parameter f, the table has these values for it: density
= 0.5 (events/sec), intensity = fff'and duration = 4.5 sec. The
process of attaching an abstract sound complex C, to the
physical characteristics provided by a given K; is governed,
once again, by the group of rotations of the cube. Each rota-
tion induces a permutation of the eight vertices of the cube,
hence a given ordered sequence of elements K. Using the
same Fibonacci process that we have described above, a new
loop is constructed, this time providing the logical temporal
ordering of the different concrete musical objects K. Note
that this second loop has the same characteristics as the
first one, i.e. it has maximal length (18) and maximal
degree (13).

3.1.4. Sieve theory and Fibonacci process in the
construction of musical scales

Before turning to our computer-aided model, we should
mention a third Fibonacci process in Nomos Alpha. It was
used for the pitch selection by means of the so-called “sieve-
theory.” According to Xenakis, the latter “annexes the con-
gruences modulo z and is the result of an axiomatic theory
of the universal structure of music” (Xenakis, 1965). In
Nomos Alpha, Xenakis makes use of the group Z¥% which
consists of the set of integers smaller than 18 and relatively
prime to 18, together with the multiplication (modulo 18). As
with the group of rotations of the cube, it is possible to create
loops starting with two given elements @ and b. The third
element in the loop, ¢, is the product of a and b, the fourth
is the product of b and ¢ and so on. By taking the starting
clements a = 11 and » = 13 we have the following loop of
period 23:

1, 13, 17,8, 13,10, ¥, 94 11, 5; 155, 7, 17 1L, 5,
17, 13435, 11,1 Ll ...
These numbers are used by Xenakis as modules for a sieve

representing a musical scale which is, in the composer’s
mind, “not too symmetric (regular) nor too empty” (Vriend,
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K% =1.mf.2 =2.mf Kk’ =05 .mf. 2= 1Lmf K’y =1.mf.2 =2mf
K% =1.fff.4.5=45 ff Ky =05. fff . 45=2250F k7, =1.ff.2 =2 ffF
K% =25 ff. 45=1125.fff  «’5 =5. fif .45=225.1 K’ =40, fff . 4.5=180.fff
K% =25.mf.2=5mf kP =5.0.mf 2=10.0.mf k' =4.0.mf. 2.0 =80.mf
K% =15.f.2.62=3.93f kP =1.08.f.262=283F K's =20.f.262=524f
K% =15 ff.344 =515 kP =1.08.f 344 =372/ K =20 ff.3.44 = 6,88 ff
K% =2.0.f.3.44 = 6.88.fF k', =232 ff. 344 =798, K =3.0.ff.3.44 = 103247
K% =20.f.262=524f kFy =232.1.262=6.08f K’y =3.0.f.2.62 =7.86/
Fig. 11. Table of temporal musical complexes ..
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Fig. 12.  Musical equivalent of the sieve B.

1981, p. 78). The initial sieve is provided by the following
set-theoretical expression:’

L(11,13)=(AnB)U{CAD)UE

where:

A =] (13q |} 135 U 137 U 139)C
B= 113

C=(11,uU l1gF

D: 139

E=13, v 13; u 13,

The symbol a, means that we take the set consisting of the
elements b, b + a. b + 2a, etc. (modulo a given integer, n).
For example the set B gives the numbers 2, 13, 25, etc. A
sieve defines a musical scale once a beginning note is asso-
ciated with the number 0 and once the unitary step is replaced
by a given (tempered) interval. Figure 12 shows a musical
transcription of the sieve B (modulo 143) with origin 0 =
middle C, and unit step = quarter-tone. The full process
leading to the construction of the set-theoretic expression
L(11, 13) is detailed in Figure 13.'" The intervallic structure

FTLL]

“Note that basic set operations are now differently written, i.e., “u
(union), “~” (intersection) and ““ (complement).

"“We do not discuss how Xenakis practically attaches musical scales
to the abstract sieve expression Z(m,n). We can only mention that
he used many metabolae (i.e., transformations), by means of which
he would, for example, attribute “different notes to the origins of
the sieves constituting the function” (Xenakis, 1992, p. 230). The
reader will find an excellent discussion of Xenakis' sieve-theory, as
utilized in Nomos Alpha, in (Solomos, 1993).

i '] e
e /

S T ¥
(ANB)UCND)UE
Fa) te
LaL) T ¥
¢ e
Interval structurs 11 4 3 4 T 5 3% 2 21 3 ==

Fig. 13. The full sieve-theory process, with one possible musical
realization.

clearly shows how set-theoretical operations operate on
locally periodic structures in order to break the symmetric
character of the final musical scale. Note that the result is
crucially dependent on the order of set-theoretic operations.
In this respect, the composer’s original sieve-expression
(Xenakis, 1990, p. 230) has no order specification, and that
may engender some confusion.

3.2. Implementation of the compositional process

One of the main characteristics of our implementation model
of Nomos Alpha is the graphical representation of the
group-theory process, together with a greater emphasis on
interactivity. As with Herma, the implementation was real-
ized in OPENMUSIC. In this case, however, we developed a
special, three-dimensional representation. helping us visual-
ize all possible group rotations. This enables the transfor-
mation of Xenakis’ static group table into a highly dynamic
object, where one may see, for each element. the corre-
sponding rotation of the cube (with respect to a particular
axis of symmetry) as well as the permutation induced by such
a rotation.
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E(GQ=A=

G(E) =B =

Fig. 14. Two elements of the non commutative group.

Fig. 15. Abstract sound complexes associated with the group
element D.

3.2.1. Group of rotations and outside-of-time/in-time
sound complexes

Figure 14 shows an example of one of the 24 possible rota-
tions of a cube into itself, namely rotation 4 (180° around
the vertical axis of symmetry). In this case, that rotation is
obtained as the product of the two transformations £ and G
(respectively 120° around the axis passing through the ver-
tices 7 and 3 of the unitary cube and 120° around the axis
passing through the vertices 2 and 6). To be noted that the
group is not commutative, in other words the product of £
and G is different from the product of G and £ (which is in
fact B).

Let us now briefly examine the beginning of the piece, to
see how abstract sound complexes are transformed into tem-
poral musical objects by means of a given group element.
Consider rotation D. This induces a permutation which
affects the abstract sound complexes in the way illustrated in
Figure 15.

Note that there are some differences with the Herma
implementation. In particular, the shade of each block now
depends on the density value. Darker blocks correspond to a
lower density in the sound-object. The intensity is repre-
sented by the height of a block. Of course the duration of the
sound-object is represented by the length of the block.
Similar to what happens with the sound complex itself, here
too the choice of a different parameter gives very different
results in terms of density, intensity and durations. Figure 16

Fig. 16. In-time sound complexes associated to D with parameter
o

shows the result of group operation D using ¢ instead of 8
(the latter was Xenakis’ choice).

It must be stressed that the change of parameters at every
third group operation, may be seen as one of the additional
strategies used by the composer in order to compensate for
the impossibility of using all 24 different permutations pro-
vided by the group of cube rotations. The cycle of those para-
meters may be easily changed in order to test to what extent
the musical results are affected within any given loop struc-
ture. For example, despite Xenakis’ efforts in keeping the
system under control, it turns out that one and the same group
element is associated to both complexes C, and K, for all
score sections labeled with the parameter 3. This means that
during the piece. there will be two sequences of eight musical
objects having the same properties in terms of density, inten-
sity and durations (this is easily checked by means of our
implementation).

3.2.2. Generality and singularity of the Fibonacci process

From a more analytical perspective, the OPENMUSIC imple-
mentation offers a general parametrized model of the
compositional process with strong connections between
macro- and micro-structures. This interplay between differ-
ent abstractions of the process is one of the most interesting
aspects of a piece that, surprisingly enough for a contempo-
rary musical work, poses no problems of segmentation:
blocks are easily recognizable, in the score and in sound
analysis alike."" But what is pointed out by our implementa-
tion is the great generality of the Fibonacci process, operat-
ing at many different levels in this music, from the logical
organization of ouiside-of-fime sound complexes to their

""'We do believe that in Nomos Alpha, like in other music based on
algebraic methods, group transformations also have a cognitive and
perceptual relevance that demands to be studied more accurately. In
fact, Xenakis insisted many times on the relevance of the group
structure for music not just from an operational point of view, but
also from a cognitive perspective. In an unpublished article where
he retraced the evolution of his compositional ideas since the sto-
chastic music period, Xenakis stressed the necessity for a composer
to delve more deeply into the mental processes of music: “music,
as our universe indeed, is plunged into the idea of recursion, of more
or less faithful repetition, of symmetry, as well as in-time and
outside-of-time. For that reasons one finds group structures almost
everywhere” (Xenakis, 1983). We thank Les Amis de Xenalkis for
making this text available,
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practical realization into temporal musical objects. We
already mentioned the question of other possible loop solu-
tions for Nomos Alpha, a problem that was of high interest
to Xenakis, although sometimes he could not control the
sheer complexity hidden in a generalized Fibonacci process.
Our implementation enables one to exhaustively study the
range of possibilities inherent to the system, comparing all
of them with Xenakis’ own solutions. Concerning the system
loops, we could see that their lengths and degrees are
strongly limited by the group type that the composer used for
his piece. As we said, maximal length and maximal degree
of the loop are strictly connected with Xenakis® variation
principle, aiming at avoiding repetitions in the type and order
of the sound complexes. Under a mathematical perspective,
these characteristics are statistically relevant, considering the
full range of all possible loop solutions. In other words, there
are 216 loops of length 18 and degree 13 over a universe of
576 possible loops, which means that almost half of all pos-
sible loops are of the same type as those used by the com-
poser. This leads to the question of whether the formal
structure of the piece, clearly divided into 18 sections (each
consisting of eight sound complexes), was an a-priori com-
positional decision, or, as we suggest, a direct consequence
of the underlying Fibonacei process.

4. Towards a unifying perspective
of the formal compositional process:
the notion of abstraction

So far, we have discussed the techniques involved in the
composition of Herma and Nomos Alpha separately. At the
operational level (that has so far been emphasized, in the
present article), the connection between the two pieces seems
to be not really straightforward. Indeed, whereas the compo-
sition of Herma involved unstructured sets and stochastic
procedures, the composition of Nomos Alpha involved
“sound complexes” distributed according to the permutations
induced by a group of transformations. One could be tempted
to say that both pieces constitute, at the very least, two quite
contrasting instances of symbolic music. We would like to
address, now, a notion hopefully capable of offering a unify-
ing perspective.

There are many ways of defining this concept in mathe-
matical as well as more general, philosophical terms.
However, we consider that modern mathematics can provide
an excellent theoretical perspective for discussing this notion
with respect to works such as Herma and Nomos Alpha.
According to the French mathematician Jean Dieudonné, the
twentieth-century notion of “mathematical structure” stems
from the fact that relations between objects have dramati-
cally become more prominent and finally replaced consider-
ations as to the narure of the objects (Dieudonné, 1987). The
main concept involved is that of abstraction. In fact, most of
the techniques used in composing Nomos Alpha can be
considered as abstractions of strategies used in composing
Herma.

4.1. From amorphous to structured sets

A first common element is the a-priori combinatorial poten-
tial of basic material: sets in the case of Herma, “sound
complexes” in the case of Nomos Alpha. In both cases, a
mathematical process helps reduce their proliferation, but in
two slightly different ways. In Herma, privileged set-theo-
retic relations exist that operate on musical objects through
the so-called “knot of interest.” By linking the boolean
expression of the set F to the flow-charts of set operations,
the composer obtains two series of sets of manageable length.
Note that the “knot of interest” only affects the external rela-
tions between musical sets, which in themselves remain
unstructured and amorphous. In Nomos Alpha, a different
process takes place. At one level, by introducing the group
of the cube rotations as a means to generate permutations,
the composer reduces the number of possible rearrangements
of eight elements, from a staggering 8! = 40320 to a small
collection of 24 possibilities. At a second level, the group
process is applied to the sound complexes themselves, in
such a way that the musical objects become structured col-
lections of elements together with inner relations. This is also
the case of the sieve-theoretical constructions although the
algebraic group is of a different nature. Nevertheless, a sieve
is nothing but a family of set-theoretical operations with the
additional property that the resulting object naturally exists
in a conceptual universe which turns out to be a structure in
the strict mathematical sense.'” There are no sieves in Herma,
which is why we can speak of an abstraction process taking
place from the set-theoretical universe of Herma to the alge-
braic one of Nemos Alpha.

4.2. From the golden section to generalized
Fibonacci sequences

In Herma the combining of a set-theoretical expression with
a flow-chart of operations (“knot of interest”) imposes a
given sequence of sets. In principle there are several possi-
ble sequences, but once the starting operation is chosen the
sequence is completely determined. The same phenomenon
takes place in Nomos Alpha, but in more abstract terms. Here
the composer develops a group-theoretical mechanism that
imposes a specific ordering within the family of all possible
group transformations. This ordering acts in a similar way as
above, in the sense that the initial conditions completely
determine the sequence of abstract events. In this case,
however, Xenakis utilizes a generalized notion of the classi-

"This cyclic group structure is now commonly used by musicolo-
gists working in the field of music representation and formalization.
It must be stressed that Xenakis has been historically one of the first
composers to analyze the relevance of the concept of cyclic groups
in music. Note that this idea has been developed independently by
the American theorist and composer Milton Babbitt, who had a
great influence on the set-theory approaches on music analysis and
composition.
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cal Fibonacci process, which is applied to group elements
instead of integers.

We have seen that Xenakis creates sequences of rotations
simply choosing two elements of the group and combining
them according to a Fibonacci law. This process affects
the in-rime domain when the same operation is applied on
abstract sound complexes featuring specific sonic character-
istics, like intensity, density and, notably, duration. The very
abstract character of the Fibonacci process in Nomos Alpha
raises the problem of what would mean, in such a context,
the concept of golden section that has a more concrete
meaning in the case of Herma. In fact, the ratio between two
successive density values appearing in the opening of the
piece (1.73, 2.80, 4.53, 7.32, etc.) all correspond to the
golden mean. We should note that the golden section can be
found in numerous works by Xenakis."

4.3. Abstraction levels in the outside-of-time/in-time
dichotomy: the “logical time”

As in the case of the set-theoretical flow-chart organization
used in Herma, the use of Fibonacci sequences in Nomos
Alpha actually leaves the outside-of-time domain, and natu-
rally belongs to a third, intermediate, temporal category that
we called the logical time.

To use Xenakis’ terminology, sets as well as “sound com-
plexes” belong to the outside-of-time domain. Their transi-
tion into the in-time domain is actually not obtained directly,
but through an intermediary domain that we have called,
above, logical time. Xenakis does not directly discuss such a
category — except perhaps in passing, in a remark concern-
ing temporal succession (Xenakis, 1992, pp. 157, 160)."* A
final examination of the compositional mechanisms reveals
that, in Herma just as in Nomos Alpha, Xenakis first intro-
duces a logical order of succession, before rendering it in the
in-time domain. The algebraic nature of the logical temporal
process in Nomos Alpha, that operates in two different levels
(sound complexes organization and sieve-theoretical struc-
turing of pitch materials) clearly represents an instance of the
abstraction that links the two compositional processes.

5. Conclusion

As mentioned in the Introduction, our computational models
cannot be considered as an analysis of these musical works,
at least not in the meaning usually attached to that word in
traditional musicology. Nevertheless, the analytical relevance
of the computer-aided model is evident if we agree that a
musical work is a “field of potentialities,” only a small part
of which comes to be actually realized in a given piece. This

1*See, e.g.. Baltensperger (1995).

'“Xenakis also discusses the idea of a third category, besides
outside-of-time and in-time: that of the remporal. The latter is
however distinct from our logical time.

is particularly clear in Nomos Alpha. The implementation
makes evident that the special loops Xenakis chose as the
skeleton for the macro-form of the piece, are not only the
most interesting ones, in terms of length and degree, but they
also are the most frequent ones built into the system he had
set up for himself. This suggests that the macro-form of
Nomos Alpha, often considered as a degree of freedom of the
composer, is probably one of the greatest constraints imposed
by the system itself. Concerning Herma, we emphasized the
gap between Xenakis’ theoretical description and the final
score. The fact that the composer frequently used stochastic
distributions for selecting the musical material shows that the
implementation is a necessary step toward a deeper discus-
sion on the possibilities of the system.

Despite some practical differences in the implementation
process of Herma and Nomos Alpha, our approach involved
the use of the computer in both cases, not as a mean of con-
firming or refuting Xenakis® theories, but as a basically
heuristic tool."”” Of course, it could be argued that our con-
clusions concerning the abstraction process from Herma to
Nomos Alpha could have been proposed without computer
experiments. Nonetheless, the modeling gave us a chance to
explore a number of common points at different levels of
abstraction.

The fact that no other work in Xenakis’ repertoire can be
as straightforwardly linked to a theoretical description of its
genesis does not mean, we believe, that the approach we
propose could not be applied to, say, stochastic or strategic
music. In other words, we consider that computer-aided
analyses are extremely useful heuristic tools that can provide
a new approach in musicological research. They make it
easier to discuss more objectively the theoretical aspects of
the formal compositional process together with its actual
musical realization.
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