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Abstract
trVe present computer models of two works for solo instru-
ment by Iannis Xenakts: Herma for piano (1962) and Nomos
Alpha for cello (1965). Both works were described by the
composer (in his book Formalized Music) as examples of
"symbolic music." Xenakis' detailed description of formal
aspects in his compositional process rnakes it possible to
implement computer models that recreate essential elements
of the ûnal scores. For ow implementations, we use OptN-
MUSIC, a visual programming language based on Common-
Lisp/CLOS developed at Ircam. Based on the experiences
gathered flom developing and exploring these computer
models, we discuss the theorctical concepts used by Xenakis
in his creative process. Further, we examine how the alge-
braic organization of Nomos Alpha can be considered as an
absttaction of the set-theoretical one used in Herma. We
firally suggest to extend Xenakjs' outside-of-time/in-time
dichotomy by means of a third conceptual category: the
"logical time."

1. Introduction
Iannis Xenakis is known as an extremely original and pro-
lific composer, the author of masterpieces that had a pro-
found impact on the music ofhis time, arrd the proponent of
a number of novel approaches to musical composition_ A
trained engineer, having closely collaborated with the archi-
tect Le Corbusiel Xenakis was particularly fascinated by
science and, more specifically, by mathematics. His lifelong
interest in these matters deeply influenced his approach to
musical composition, so much so that formal/mathematical
considerations represent an integral part of his creative
process. ln the middle ofthe 1950s, he staftedwlth stochastic
zlasic, using probability distributions to shape large masses

ofsounds, and later applied aspects ofgame theory to music.
By the end of the 1950s, he tumed to algebra and logic. He
called symbolic music the body of musical works that
resulted fiom the latter approach.

Herma, for piano, and Nomos Alpha, for cello, are two
such examples. Both are nowadays considered masterpieces
and have become part ofthe repertoire of many pianisis and
cellists. These works were chosen as the subject ofour srudy
because of the wealth of details provided by Xenakis in his
a-priori t\eoretiçal description of these compositions.

Xenakis has published numerous commentaries on his
ov"n musical output. For him, each one of his works ,,poses
a logical or philosophical thesis" (Bois, 1966, p. l4). With
Herma ar\d, Nomos Alpha, wehave two such ,.theses" ofequal
relevance, who can only be analyzed within a more genèral
discussion on Xenakis' symbolic music (Andreatta, 1997).
As pointed out by the compos in his long interview witb
Balint Varga (Yarga, 1996), there is a thread linkjng Hama
to Nomos Alpha,having mainly to do with their formal orga_
nization. However, whl\e in Hama the composer used amàr_
phous sets, the relationships between them only clepending
on extemal set-theoretical operations (inclusion, intersection,
union, complement, etc.), in the cello piece he used struc_
tured sets, i.e. collections of elements together with a binarv
operation such that the group axioms are sarisfied. Mosr of

ll-et us recall that a group is a set G of elements together with a
binary operation (written as .) such that the for:r following proper_
ties are satisfied: (1) c/osr.rre: a.ô belongs to G for all a anà 6 in C;
(2) associativiry: @.b). c = a.(b.c) for all a, b, c belonging to G;(3) identit,v: there exists a unique element e in G such that
a e=e.a=aforallainG'(4)inversîon: for each element,r in 6
there exists a unique element a' in G strch that a.a, = a, . a = e.
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Xenakis' theoretical constructions are documented in his
book Formqlized Music (Xenakis, 1992), where the discus-
sion of Herma and Nomos Alpha (Chapters 5 and 6, respec-
tively) ranges among the most comprehensive and deÉiled
ones. Indeed, Xenakis' own description of th€se two pieces
is close to providing formal models of their scores. Thus,
based on his discussion, one can attempt to elaborate a com-
puter progmm that rc-crcates essential parts of the musical
score. The present paper is the account of such an attempt,
and provides a discussion of the results thus obtained.

In order to clarifu our object of study, a few comments
should be made concerning the nature itself of Xenakis' the-
oretical descriptions. An importart difference exists between
the reconstruction ofa score by implementing the composert
model lor that score, and what is usually meant by "music
analysis." Wile a strict definition of the latter camot be pro-
vided here, let us iust emphasize that the two do not neces-
sadly meet. The composer can, for instance, introduce layers
ol analyzable and pertinent structure without necessarily
being aware of it. Conversely, what the composer considers
as pertinent might v€ry well be entirely lost in the final result,
either at the score level or at the level ofthe reception ofthe
work. The latter is particularly the case with Xenakis, as will
become evident later. To sffutinize his formal models is
to analyze a specific - and important - part ol his creative
process. We believe that such considerations are pertinent in
an actuâl analysis, yet such a claim is not the object of the
present article. Rather, it is an insight into the composer's
creative process that is primarily sought here.

To transcribe the compositional process into computer
models is to adopt a particutar perspective on Xenakis' the-
oretical discussion and its implications. Indeed, greater atten-
tion must be given to the strictly operational level, the one at
which the actual transposition from the composer's specula-
tive considerations abo\t swbolic music into actual musical
output is realized. The broader implications of these "mech-
anisms" and their musical relevance will be the focus of
the next two sections, bearing on the composition of Hetma,
and subsequently on Nomos Alpha. In a lâter section, the
processes relative to those two works will be brought together
into a common perspective. Despite some crucial differences
between the two pieces, the respective formal aspects reveal
a number ofcommon features. In addition, the compositional
process behind Noût os Alpha seems to feature a higher level
of abstraction compared wilh Hetma. We also discuss the
importance ofthe implementation with respect to this point,
and suggest further developments of our computational
approach.

2. Herma
2.1. The theoretical framework

2.1.1. The basic malerial

Xenakis describes Herma as a presentation in "sonorous
symbols" - instead of"graphic symbols" - ofthree pitch sets

Fig. L The Venn diagram olthe set F

together with the basic set operations, namely anlon (denoted
as "+"), intersectiorl (denoted ur "r'; artd complementation
(denoted by the superscript " "). First, the composer consid-
ers a "referential set" that he calls R, "consisting of all the
sounds of a piano" (Xenakis, 1992, p. 170). He then selects
three pitch sets l, .B and C among the elements of R. Now,
these three sets, plus the reference set and their combinator-
ial potential constitute the basic material of th€ piece. With
the well-known terminology introduced by Xenakis himself,
this material clearly belongs to the outside-of-time domarn.2
The way this material will unfold in time is not yet specified.
To avoid too much arbitrariness. Xenakis introduces what
he calls a "knot ofinterest" (Xenakis, 1992, p. 173) aad adds
two organizational elements to his construction: The fust, is
a "finality," i.e. the aim towards which the entire piece should
be oriented and that will constitute the final section. This set

- that Xenakis calls F - is denoted as the black area in the
Venn diagram of Figure l.

The second element is a selection principle, such that
among all sets that could possibly result, only a limited
number is selected togetler witl a first embryo of its in-time
organization. To this en4 Xenakis notes that the set F can be
algebraically expressed in two ways, as follows:

and

F = (A. B+À. B). c + (A. B+À B). c

F=À B.c FA.B.a+A.B.a+Â.8.c

2\he outside-of-time refers to any aspect of a work of music that
can be formalized independently of time. Any other aspect, partic-
ularly if dependent on the time flow, belongs to the in-time domain.
A l2-tone row, considered in its pre-compositional, theoretical
state, is outside-of+ime (although the composer seems to suggest
the opposite), while a particular instance ofthis series in a score is
in-time.
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Fig. 2. (a,b) Flow chart of operations.

For each representation he draws a diagmm of operations
which, starting from sets l, B and C, outlines the sequence
of the set-theoretic op€rations to apply in order to obtain
the set f'(Figure 2a and 2b). These diagrams can be equiva-
lently described as determining specific series of sets. Each
element of a given series is the result of one, and only one,
set-theoretic operution either applied on sets that have
appeared previously in the series, or applied directly on sets
A,BorC.

2.1.2. The "construction" of the piece

From this point on, Xenakis enters what can be called the
construction of the work, in the sense that he does not impose

on himself any consûaint of a "formal" nature anymore.
Indeed, he obsenes that the first diagram is "more econom-
ical" while the second presents "morc elegant s)rynmetdes,"
and finally takes the decision to work out his composition
based on a "conftontation" between the two (Xenakis, 1992,
p. 175).

To this aim, he defines tr'vo layers of different dynamics:
fff and f for the one diagmm; JF ard ppp Tor the other Each
layer will carry a different sequence unfolding in parallel
(Figure 3) and reaching set -F' "simultaneously" at the end of
the piece. Each layer is itself divided into two subJayers,
again according to dynamics. One sub-layer (ff and î)
carries mutually disjoint sets whose union results in set F In
mathematical terminology, these sub-layers constitute apar-
tition ol the set F . The other subJayer ( f and ppp) canies all
the remaining, intermediary sets, imposed by the sequence
of operations illustrated by the diagram in Figure 3.

With this procedure, Xenakis has already le?cthe outside-
of-time domain in its strictest sense. The sequences thus
obtained however, axe not yet sufficient to concretely deter-
mine the elements of his score. In order to achieve a transi-
tion he intfoduces two new elements, €ach corresponding to
techniques he used extensively in previous works: the orga-
nization of the overall form by means of a graph, and the
stochastic selection of elements.

The graph, with the four layers on the y-axis and time on
the x-axis, specifies the relative position together with a time
span during which a particular set is deployed. A short exam-
ination reveals three clearly distinguishable sections. In th€
fust, the sets .R,1, .4 c, B, Bc, C and Cc are presente{ in that
particular order, providing an "exposition" of the main ele-
ments. In a sscond section, the two parallel series of sets are
presente{ as determined by the graph in Figue 2. This can
be considered as the "development" section ofthe piece. The
last part functions as a conclusive musical formula. and
features the elements of the final set F.

2.1.3. The stochastic elements

Xenakis also describes how the sets are "transcribed" from
their amorphous outside-of-time state into a specific in-time
succession ofpitches by stating that "there exists a stôchastic
correspondence between the pitch components and moments
of occurrence" (Xenakis, 1992, p. 175). Although this
could resemble a return to the techniques of stochastic
nr.ric, Xenakis insists on distinguishing it. He explains
that the stochastic elements in the composition of Henwt
solely serve the purpose of "demonstrâting the elements of
the sets" (Varga, 1996, p. 85) as opposed to being a means
to "sculpting" sound masses. In other words, the introduc-
tion of randomness in the composition of Herma enables
the transfer of the sets into the i -time domain. and at the
same rime rules out the emergence of any audible regularirl
that would contradict their amorphous (i.e. unstructured)
nature-.

R
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Fig. 3. Flow chart of the layered series.

In conjunction with this stochastic element, Xenakis also
introduces contrasting "densities."3 For each occurrence of a
given set, its density is stipulated in the in-time flow chaft
(Figure 4). In addition, Xenakis also distinguishes between
two modes in the sonic mânifestation ofsets. He names them
"cloud" and "linear," but does not clariry how exactly these
terms should be i-nrerpreted. Another even more imponanr
point he does not claxi4, is the one concerning the t)?e of
probability distribution used for the duration values as well
as for the pitch selection.

In reading Xenakis' description of Herma, one gets the
impression that his aim is to describe the piece entirely in
theoretical terms, disregaxding the actual preparation of the
score. The next section focuses on the tanscription of
the composer's theory into a computer program. Several
h'?otheses had to be made and tested conceming the details
ofthe stochastic aspects, before â.n "optimal" solution could
be found. The resulting computer-generated "sonorous
equivalent" of the theory provides a basis for discussing the
extent to which Flenr?a can be considered as a direct outcome
of Xenakis' theoretical framework.

2.2. The computer implementation

2.2.1. Some generql aspects

Models of sequentiality in music are genenlly pafiial
orders represented by lattices showing temporal logic

rln Xenakis' teminology, a density cofiesponds to a mean value,
that is, an average number ofevents per unit of time, and not to the
more technical notion of "probability density function."

relations between musical units. Let us call logical time
(Assayag, 2000) this particulax representation levsl in
the composition process. In Herma, the logical time
structule is partly revealed by the charl in Figure 3. The
in-time structwe shown in Figwe 4 is one of the many
possible in-time manifestations. It is interesting to note
that Xenakis tnds it necessary to ex_tribit a logical time
chart, clearly an intermediate between the outside-of-time
aîd The in-time instances, while not explicitly identif ing
thts logical time category in his paper. Nevertheless, it is
precisely on this dichotomy between logical time N\d in-
tu,ry e instances that we have built our implementation of the
model-

2.2.2. The "maquette" and the temporal blocl<s in
OPENMUSrc

The implementation has been realized in the OPENMUSTC
environment, a visual programming language for composers
and musicologists developed at lrcam. For the encoding of
Herma, a maquefte object was used, that is, a container that
displays information concerning different levels of temporal
organization. At any of these levels, visual encoding of
instructions is available. A recursive contailer structue,
enabling the embedding of substructues into larger musical
fotms, is also possible, but this featue was not necessary for
oru purposes, here. Figure 5 shows the maquette corle-
spondingto Herma. In essence, this maquette rsproduces the
temporal fow charr provided by the composer (however, set
-R - the beginning ofthe piece - was omitted). The rectangle
blocks (called tezporql block; in OrENMUSIC) represent the
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Fig.4. Inaine dorilain chaft.

Fig. 5. The maquçtte of Herna.

sets, and the four layers correspond to those chosen by
Xenakis.

A deeper look into the construction reveals the connec-
tions between the various blocks (see Figure 6). Here, the

pattem ofthreads reflects the flow of information inherent in
Xenakis'construction. Sets built earlier in the process are
used again later lor the computation ofnew sets. This idea is
summarized in the flow charts shown in Figure 2, wirich are

L
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Fig. 6. Connection pattems irl the maquette.

then only shaped as a logical time structure in Figure 3.4

However, the pattem of threads also reflects a purely prag-
mâtic goal: it allows us to avoid the redundancy of repre-
senting two separate series leading to the final set 4 and that
saves computation time.t

Figure 7 shows the t'?ical content of a temporal block.
This construct, called a patch in OPENMUSIC, is actually the
equivalent of a computer program. It is encoded using visual
rather than text code. The input arrow in the upper right
corner represents the input data. In the case of Herma, the
input data include the sets built up in previous blocks, needed
to det€l.lnine the set that will be active throughout the tem-
poral block. The particular set operations utilized appear
next. The other patch icons represent abstractions for other
visual subprograms (not shown) aimed at determining, in
accordance with a given density value, the selection of
pitches within the considered set and their onset times. In
short the subprograms gov€rn the stochastic part ofXenakis'
construction.

2.2.3. The selection of probability distribution

As pointed out earlier, there is little information provided by
the composer concerning the stochastic aspects. For dura-
tions, we have chosen the exponential probability function,
which is commonly used in modeling all kind ofevents hap-
pening at random time intervals with an average density (a

aSome of the arrows in Xenakis'chart depicted in Figure 3 carulot
be explained as precedence relations in â logical time structure.
Their meaning is actually a mystery Any sugg€stions would be

welcomel
5Accordingly, the particular set of connections used in the imple-
mentation is not the only possible one.

t ?ical example is the average time at which customers arrive
at a counter). Considering that Xenakis had fiequently uti-
lized the exponential probability function for some of his
earlier compositions, this lends itselfquite naturally. The raw
output ofthis probability firnction, however, requires an addi-
tional computation step. Indeed, events close together need
to be aligned into "chords," and one should adopt a time
granularity {itting with the complexity of the rhyhms found
in the music while eliminating the strictly continuous char-
acter of the mw output.

Our choice of the ArcSin distribution for the selection of
pitches was of a more speculative nature, compared with the
exponential dishibution. Its d€nsity curve is flat in the middte
and increases in both outer mrges, thus roughly emulating
the position of a musician's hands. As with the time granu-
larity mentioned above, the choice of the probability distrib-
ution goveming the pitch was a matter ol trial and error
experimentation, until we ended up with a result reflecting
the particular "physiognomy" of Herma.

The stochastic element in Xenakis' constuction implies
that each evaluation of the model yields a new manifestation
in the pitch/intensity/time domain. It is safe to say that
every instance bears a definite resemblance with the original
Herma. Tlte masses of sound the long stretches of silence,
the overall shape ofthe piece are all quite faithfully rendered.
Yet the "impetus" so peculiar ofthe original work is clearly
lost in the computer model. This leads to the question of
whetler any objective element can be found to corroborate
this inherently subjective observation.

2.3. The "gzp" b€tween theoreticâl construction and
musicâl reâlization

Two assumptions can be made, conceming the qualitative
difference observed above. First, the "human touch" is of
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course missing in the conput version, even though in
an attempt at humanizing the final result - we had the
intensity levels modulated by a normal (Gaussian) distribu-
tion centered around the main intensiry Second despite
the effort put in carefully choosing the probability flurctions,
the chosen functions might not be close enough to Xenakis'
own. Both assumptions remain, of course, open to furlher
discussion. However, we should also address ourselves
to another point: a closer look at the score reveals thât
Xenakis made "correctiols," deviating flour the theory at

several levels. In particular. we focus on two occun-ences ol'
these.

2.3.I. Interventions in the s|ochastit Jtrt.tcest-

The passages at bars 30 3l and i36 138 arc overtly in sharp
contrâst to the rest of tire score. The one has almost a dia-
tonic charucter. The other is a pianissimo buildup of held
notes leading into the harmony of bar 138. In both cases.
there is a sort of respite in the music's activity that contl.a-
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dicts the stochastic deployment of pitches. The former
passage marks the end in the "exposition,' of the reference
set (bars 1-29). The latter marks the end ofthe complete fiIst
section in the piece (bars 1-132). Thus, both passages appear
at special transition points in the development ofthe overall
musical form. It seems quite clear that Xenakis has allowed
himself to intelvene in the stochastic mechanism in order to
emphasize these afiiculations in the musical form.

Two more details add to this evidence. In the passage
eventually leading to bar 136, the amount of pitches per
unit of time increases, yet Xenakis' temporal flow chart
does not stipulate such a "density crescendo." Moreover,
Xenakis gives a clear direction to the pitch sequence:
starting with bar 124, notes are first comprised within a
relatively narrow pitch range, less than two octavesi then
pitches shift towards the lower range, then move back
upwards and finally broaden in their range before bar 136.
This overall gesture, clearly "sculpting" the flow ofpitches,
is reminiscent of passages found in Xenakis' stochastic
works, an aspect which is not accounted for in the theoreti-
cal desciption of Herma.

2.3.2. Interventions in the selection ofpitches
Several commentators have pointed out that some ol the
pitches found in the score are foreign to the sets stipulated
by the composer (Bayer, 1981; Gibson, 1994; Montague,
1995; Schaub, 2001; Wanamaker, 2001). In his detailed
analysis, Bayer (1981) was the first to make such findings
public. He suggested that, in some cases, such ,.corrections,,
are due to the fact that certain sets prescribed by the theory
are too poor to "sustain" the musical flow Indeed. for a set
to be presented over an extended time span, with a relatively
high density, it should include a large number of pitches as
to avoid an undesired "stall" in the unfolding of the music.
This is not enough to explain all of the exceptions found in
the score, but it certainly applies to some passages.

For instance, a passage featuring quite a large number of
such exceptions can be found in bars 167-172. Accordingto
the theory, about 80 pitches are supposed to be deployed
here, but the set stipulated in the theory contains only 18
pitches, of which several are octave doublings (pitch classes
C, C#,Ê.b,Bb, andB are not featured at all). To strictly obey
the theory would imply numerous pitch repetitions naturally
leading to the "stall" effect mentioned above.

Such observations provide a plausible, albeit partial,
explanation of the shortfalls of the computer model in ren-
dering the original score. Clearly, no ref,nement of the dis-
tribution could by itself reproduce the above mentioned
"corrections." However, it would not be impossible to return
to the computer model with the aim to "correct" it. The
OPENMUSIC environment could easily allow us to introduce
the additional constmints required. To do so, though, we
would need a change ofperspective, as the computer model
would no longer be a reflection of Xenakis' theoretical
description.

3. Nomos Alpha
3.1. The formal compositional process

Nomos Alpha is probably one of the most analyzed works
in contemporary music. At the present lhere are ar least
four lengthy analyses (Del-io, 1980; Solomos, 1993;
Vandenbogaerde, 1968; Vriend 1981). To this list we may
also ldd the composer! derailed descriprion. in his book For-
malized Music (Chapter 8, "Toward a Philosophy of Music").
The special length of these analyses can be viewed as a
symptom of the difficulties found in the attempt to sunma-
rize the questions raised by this piece in few pages. Never-
theless, it seems not useless to offer the reader a concise
discussion ol mathematical aspects not developed in previ-
ous studies, and to dmw some conclusions based on our
implementation of the compositional ptocess. We are aware
that, in doing so, we disregard important aspects that resist
formalization, as the sieve-theoretical pitch organization, and
the question ofthe so-called "kinematic diagrams', by which
Xenakis supposedly determined pitch-regions and playing
techriques (pizzicati, battuto col legno, pizzicati glissandi,
etc.).6

As already mentioned, we are interested in a more general
issue, namely the process of abstraction leading from the
amorphous sets of Herma to the more complex algebraic
structures of NomoJ Alpha. The groap-theoretical conception
behind the latter work utilizes mathematical group structues
in two ways: (1) as an organizing principle for what Xenakis
calls "sound complexes;" and (2) as the theoretical back-
ground in the construction olmusical scales bv means ofthe
so-called "sieves."

3. LI. Abstract (or outside-of-time) sound complexes

Figure 8 illustrates the eight prototypical ,,sound complexes',
as described and graphically represented by Xenakis himself.
The order of sound complexes is provided by means of a
mathematical group, in this câse the 24 rotations thât trans-
form a cube into itselL The eight sound complexes are
attached to the eight vertices of the cube, such that every
single rotation determines a permutation of the order of the
sound complexes.T

6See Solomos (1993) for a discussion ofthese issues.
7We quickly discuss the way in which an element of the group of
rotations determines a specific sequence ofsound complexes. This
is made possible by taking a reference cube (which is, in fact, the
unitary element of the group) thât prcvides the initial association
between sound complexes and vertices. A mtation induces a per_
mutation of the vertices of the reference cube, hence a particulâx
sequence of sound complexes. Morcover, a given group element
may be affected by a parametet (q, p ot T) vthich changes its func-
tion along the piece. The prwious labeling ofsound complexes, for
example, only concems the so-called B sections of the piece. We
will come back to the structural role of the pârametem in the
discussion of the rr-rine prccess.
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Fig. 8. The eight basic sound complexes.

Fig. 9. The
Alpha.

ct c1 ca c, c5 c3

fi$t sequence of eight sound complexes in Nomo.t

Figure 9 shows the sequence ofeight abstract sound com-
plexes attached to the group transformation D that has been
chosen as the starting point for the piece. Thanks to the group
property, any combination of two elements remains in the set
of rotations. ln other words, the product of two rotations is
still a rotation, as shown in the group table illustrated in
Figure 10.

3.1.2. The generalized Fibonacci process

The closure axiom, togethff with the fact that the group of
rotations is finite, enables the construction of Fibonacci
sequences of rotations (Xenakis did not call them such, but
we prefer to remain consistent with the mathematical termi-
nology). The latter turn out to have a cyclic character Indeed,
selecting two given elements xr and x2 of the group and
applying the group operation "r'w€ obtain a sequence of
terms.r3, t4,..., Jri where x3 = x2 xt, x4= xj x2,..., jfi+r =
xr'rêr. That is, each element in the sequence (each rotation)
rs the product of the two previous ones, just as each term in
a Fibonacci sequence of integers is the ium of the two
Previous terms.
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Fig. 10. Table of24 rotations ofthe cube into itself (Xenakis'own notation).
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Some mathematical properties of this generalized
Fibonacci process ale of real interest, and may shed some
light on apparently arbitrary decisions made by the com-
poser Firstly it tums out that this process always ends with
a loop. In other words, starting with two group elements _y,
I and constructing a sequence with the Fibonacci method
we necessarily find the same elernents X, I in the same order
after afnite tumber ofsteps. This shows the inherently cyclic
nature of the process, which strictly depends on the charac-
ter of the given group. Secondly, loops may have different
lengths, where /ergt means the total number ofiterations in
the Fibonacci process that are necessary to end up with a
loop. It can be shown mathematically that the Fibonacci
process can never cover all 24 elements of the group: the
maximal length is 1 8 and the largest number of different ele-
ments inside a loop is I 3 . We will call th is number Ihe degree
ofthe loop. In other words, only 13 ofth€ 24 group elements
may be selected by a Fibonacci process giving loops of
maximal length (18 itemtions).

Xenakis makes use ofthe following loop, obtained by l8
iterations ofthe Fibonacci process (starting with elements D
and Q12): D ) Q12 è Q4 + E + e8 -è e2 --> E2 -è e7+ Q4 -) D2 + Q3 è Q4 : L2 + e7 + e2 --> L --> e8) Qll +...3

The overall structure of the piece can now be easily sum-
marized, taking the Fibonacci loop as the main skeleton, and
inserting non-structued sections ("intermezzi,') every third
loop element. We will not take into account the "intermezzi,"
for all authors agree that they are completely independent
from the group-theoretic mechanism (on the interrelation-
ship between these two layers it Nomos Alphq, see DeLro,
1985). Denoting the group trarsformations with,{ (, = l,
. .. , 18), and the "interm€zzi" with 4., the piece can be
segmented in the following way:

[x, --> x, ] x3 ) Itf -lx4 -) X5 -) x6 + I.))+ ...
-+ [,Y,u -+ X,, -s Xru -+ Iu]

3.1.3. Temporal (or inlime) sound complexes

It should be observed that the sound complexes associated to
the group elements have to be considered as outside-of-time
musical structures. They become in-time objects only when
three further parameters (densi8 intensity and duration) are
taken into account. Densities, intensities and durations in
each sound complex are determined by the group ofrotations
of an auxiliary cube. As in the case of the absftact sound

3 Xenakis seems to be interested in other loops as well, as he ofers
their graphical rcpresentations (Xenakis, 1992, p. 225). This mises
the questio[ conceming the re]evance.of a parametrized model of
this compositional process, where one may change the initial con-
ditions and explore the potentialities hidden in the system. \rye will
stress this point in the final section, discussing musicological impii-
cations of our model for Nomos Alpha.

complexes, Xenakis makes use ofan additional parameter (a,
p or '72) in order to increase the variability ofdensities, inten-
sities and durations ofthe sound complexes. In other words.
lhere are eight musical objects (i.e., in-time sound com-
plexes) for each parameteq which gives 8 x 3 = 24 dilferent
musical objects. Following Xenakis, notation, we will denote
the latter with K,. As in the case olabstract sourd complexes,
Xenakis changes the parameter every third rotation. and does
so in a cyclic pattern: fp -+ y-+ d -+ p + ]/+ d]. Observe
that this operation, too, can be considered in the light of
group theory In fact, cx, B and, y can be âssociated to the ver-
tices ofa triangle; six successive rotations of l20o around the
center produce the cycle that provides the order of the dif_
fer€nt sections of the piece.

The table in Figure 1l lists the characteristics of the
musical objects r(,, as dependent on patameters d, p afi T
(see Xenakis, 1992,p.227). For example, ifwe consider the
first sound complex in the score of Noruos Alpha, which rs
K, with parameter B, the table has these vâlues for it: densitv
= 0.5 (evenrs,sec). inl.ensiry =ltrand duration = 4.5sec. The
process ol attaching an abstract sound complex Ç to the
physical characteristics provided by a given { is govemed,
once again, by the gloup ofrotations ofthe cube. Each rota-
tiôn induces a permutation ofthe eight vertices ofthe cube,
hence a given ordered sequence of elements .ç. Using the
same Fibonacci process that we haye described above, a new
loop is constructed this time providing the logical temporal
ordering of the different concrete musical objects 4. Note
that this second loop has the same characteristics as the
fust one, i.e. it has maximal length (18) and maximal
degree (13).

3.1.4. Sieve theory and Fibonacci process in the
construction of musical scales

Before turning to our computer-aided model, we should
mention a third Fibonacci process in Nomos Alpha- It was
used for the pitch selection by means ofthe so-called .,sieve-
theory." According to Xenakis, th€ latter ,.annexes the con-
gruences modulo z and is the result of an axiomatic theorv
of the universal structure of music" (Xenakis, 1965). I;
Nomos Alpha, Xenakis makes use of the group Zl! which
consists of the set of integers smaller than 18 and relativelv
prime to 18, together with the multiplication (modulo lg). As
with the group ofrotations ofthe cube, it is possible to create
loops starting with two given elements a and à. The third
element in the loop, c, is the product of q and b, the fourth
is the product of à and c and so on. By taking the starting
elements a = 11 and ô = 13 we have the following loop of
period 23:

tl, t3, 17, 5, 13, t1, t7, 7 , tl, 5, t, 5, 7 , 17, tl, 7, 5,
17, 13,5, 11, 1, 11....

These numbers are used by Xenakis as modules lor a sieve
representing a musical scale which is, in the composer's
mind "not too synmetric (regular) nor too empty,' (Vrien4
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Fig. I 1. Table of temporal musical complexes K,.

Formal aspects of Xenakis' "srybolic music"
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Fig. 13. The full sieve-theory process, with one possible musical
rcalization.

cleaù shows how set-theoretical operations operate on
locally periodic sûuctues in order to break the symmeftic
character of the final musical scale. Note that the result is
crucially dependent on the order of set-theoretic operâtions.
In this respect, the composer's original sieve-expression
(Xenakis, 1990, p. 230) has nô order specification, and that
may engender some confusion.

3.2. Irnplementation of the compositional process

One ofthe main characteristics ofour implementation model
of Nomos Alpha is the graphical representation of the
group-theory process, together with a greater emphasis on
interactivity. As wrth Herma, the implementation was real-
ized in OpENMuSIc. In this case, however, we developed a
special, three-dimensional representation, helping us visual-
ize all possible group rotations. This enables the hansfor-
mation of Xenakis' static group table into a highly dlnamic
object, where one may see, for each element, the colle-
sponding rotation of the cube (with respect to a particular
axis of symmetry) as well as the permutation induced by such
a rotation.

*t-t=il=
y'^

- __--l.. --- æ"æ--

Fig. 12. Musical equivalent of the sieve B.

1981, p. 78). The initial sieve is provided by the following
set-theoretical expression:e

z(l 1, 13) = (A ô B) u (cn D) u E
where:

A=(13j u 13.u 137 u 13r)"
B = llz
Q=(l1ou11).
D=13s
E= 130u131 u 136.

The symbol 4, means that we take the set consisting of the
elements ô, b + a, b + 2a, etc. (modulo a given integer, n).
For example the set B gives the numbers 2, 13,25, etc. A
siev€ defines a musical scale onca a beginning note is asso-
ciated with the number 0 and once the unitary step is replaced
by a given (tempered) interval. Figure 12 shows a musical
transcription of the sieve B (modulo 143) with origin 0 =
middle C, and unit step = quarter-tone. The full process
leading to the construction of the set-theoretic expression
Z(l I, 13) is detailed in Figure 13.10 The intervallic structure

eNote that basic set operations are now differently \aritter, i.e., .,r-.r,'
(union), "n" (intersection) and """ (complement).
r0We do not discusshow Xenakis practically attaches musical scales
to the abstract sieve expression I(m,û). We can only mention that
he :used many metabolae (i.e., transformations), by means of which
he would, for example, attribute "different notes to the origins of
the sieves corstituting the lùnction" (Xenakis, 1992, p. 230). The
reader will find an excellent discussion ofXenakis'sieve-theory, as
Dtilized ii Noùos Àlplxa, in (Solomos, 1993).
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E(G)=A=

G(E)=B=

Fig. 14. Two elements ofthe ûor commutative group.

Fig. 15. Abstract sound complexes associated with the group
element D

3.2.1. Group of rotqtions and outside-of-time/in-time
sound complexes

Figure 14 shows an example ofone ofthe 24 possible rota-
tions ol a cube into itself, namely rotation I (180' around
the vertical axis of symrnetry). In this case, that rotation is
obtained as the product of the two ûarsformations E and, G
(respectively 120' around the axis passing through the ver-
tices 7 and 3 of the unitary cube ard 120" around the axis
passing through the vedices 2 and 6). To be noted that the
group is not commutative, in other words the product of t
and G is different from the product of G and E (which is in
fact.B).

Let us now briefly examine the beginning ofthe piece, to
see how abstact sound complexes axe t€nsfom€d into tem-
poral musical objects by means of a given group element.
Consider rotation D. This induces a permutation which
affects the absûact sound complexes in the way illustrated in
Figure 15.

Note that therc are some differences wrth the Herm.t
implementation. In pafticular, the shade of each block now
depends on the density value. Darker blocks correspond to a
lower density in the sound-object. The intensity is repre-
sented by the height ofa block. Ofcourse the duration ofthe
sound-object is represented by the length of the block.
Similar to what happens with the sound complex itself, here
too the choice of a different parametff gives very different
results in terms of density, intensity and durations. Figure 16

Fig. 16. In{ime sound complexes associated to D with parameter
a.

shows the result of group operation D using a instead of B
(the latter was Xenakis' choice).

It must be stressed that the change of pammeters at every
third group operation, may be seen as one of the additional
shategies used by the composer in order to compensate for
the impossibility of using all 24 different permutations pro-
vided by the group of cube rotations. The cycle ofthose para-
meters may be easily changed in order to test to what extent
the musical results are affected within any given loop struc-
ture. For example, despite Xenakis' efforts in keeping the
system under conûol, it tums out that one and the same group
element is associated to both complexes Ç and {, for all
score sections labeled with the parameter p. This means that
during the piece, there will be two sequences ofeight musical
objects having the same properties in terms ofdensiry inten-
sity and durations (this is easily checked by means of our
implementation).

3. 2.2. Generality and ;ingularity of the Fibonacci process

From a more analyical perspective, the OpENMusrc imple-
mentation offers a general parametrized model of the
compositional process with strong connections between
macro- and micro-strucîrres. This interplay between differ-
ent abstractions ofthe process is one ofthe most interesting
aspects of a piece that, surprisingly enough for a contempo-
rary musical work, poses no problems of segmentation:
blocks are easily recognizable, in the score and in sound
analysis alike.rt But what is pointed out by our implementa-
tion is the great generality ofthe Fibonacci process, operat-
ing at many different levels in this music, f?om the logical
organization of ouBide-of-time sound complexes to their

'lWe do believe that in Nomos Alpha,like in other music based on
algebraic methods, group transformations also have a cognitive and
perceptuai relevaûce that demands to be studied more accurately. ln
fact, Xenakis insisted many times on the relevance of the group
structure for mùsic not just from an operatioral point of view, but
also from a cognitive perspective. In an unpublished article where
he retraced the evolùtion of his compositional ideas since the sto-
chastic mùsic perio4 Xenakis shessed the recessity for a composer
to deive more deeply into the mental processes of music: "music,
as ouruliverse indeed, is plunged irto the idea ofrccursion, ofmore
or less faithful repetition, of q,lnmetry, as well as in-time and
outside-of-time. For that reasoûs one linds group structues almost
everywhere" (Xenakis, 1983). We thank Zes lmls de Xenakis for
making this text available.



practical realization into temporal musical objects. We
already mentioned the question of other possible loop solu-
tions for Nomos Alpha, a problem that was of high interest
to Xenakis, allhough sometimes he could not control the
sheer complexity hidden in a generalized Fibonacci process.
Our implementation enables one to exhaustively study the
range of possibilities inherent to the sysiem, comparing all
of them with Xenfis' own solutions. Conceming the system
loops, we could see that their lengths and degrees are
strongly limited by the group type that the composer used for
his piece. As we said, maximal length and ma-rimal degree
of the loop are strictly connected with Xenakis' variation
principle, aiming at avoiding repetitions in the tlpe and order
of the sound complexes. Under a mathematical perspective,
these chamcteristics are statistically relevant, considering the
full range ofall possible loop solutions. In other words, there
are 216 loops oflength 18 and degree 13 over a universe of
576 possible loops, which means that âlmost half ol all pos-
sible loops are of the same type as those used by the com-
poser. This leads to the question of whether the formal
structure of the piece, clearly divided into l8 sections (each
consisting of eight sound complexes), was an a-priori com-
positional decision, or, as we suggest, a dir€ct consequence
of the underlying Fibonacci process.

4. Towards a unifying perspective
of the formal compositional process:
the notion of abstrâction
So far, we have discussed the techniques involved in the
composition of Herma and Nomos Alpha separately. At the
operational level (that has so far been emphasized, in the
present article), the connection between the two pieces seems
to be not really straightforward. Indee4 whereas the compo-
silion of Hermq involved unstructured sets and stochastic
procedures, the composition of Nomos Alpha involved
"sound complexes" distributed according to the permutations
induced by a group oftransformations. One could be tempted
to say that both pieces constitute, at the very least, two quite
conûasting instances of s'îbolic music. We would like to
address, now, a notion hopefully capable of offering a unify-
ing perspective.

There are many ways of defining this concept in mathe-
matical as well as more general, philosophical terms.
However, we consider that modern mathematics can provide
an excellent theoretical perspeclive lor discussing this norion
with respect to works such as Herma and Nomos Alpha.
According to the Frcnch mathematician Jean Dieudonné, the
twentieth-century notion of "mathematical stlucture" stems
from the lact that relations between objects have dramati-
cally become more prominent and finally replaced consider-
ations as to the ralrrr ofthe objects (Dieudonné, 1987). The
main concept involved rs that of qbstractior. ln fact, most of
the techniques used in composing Nomos Alpha can be
considered as absfiactions of strategies used in composing
Herma.
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4.1. From amorphous to structured sets

A fust comrnon eleme'ilt is the a-priori combinatorial poten-
tial of basic material: sets in the case of Herma, *sound
complexes" in the case of Nomos Alpha. In both cases, a
mathematical process helps reduce their proliferation, but in
two slightly different ways. In Hermq, privil€ged sertheo-
retic relations exist tiat operâte on musical objects through
the so-called "knot of interest." By linking the boolean
expression ol the set F to the flow-charts of set opemtions,
the composer obtains two series ofsets ofmanageable length.
Note that the "knot of interest" only affects the externa.l rela-
tions between musical sets, which in themselves ternain
unstructured and amorphous. It Nomos Alpha, a different
process takes place. At one level, by introducing the group
of the cube rotations as a means to generate permutations,
the composer reduces the number ofpossible rearrangements
of eight elements, from a staggering 8! = 40320 to a small
collection of 24 possibilities. At a second level, the group
process is applied to the sound complexes themselves, in
such a way that the musical objects become structuled col-
lections ofelements together with iruler relations. This is atso
the case of the sieve-theoretical constructions although the
algebraic group is ofa different nature. Nevertheless, a sieve
is nothing but a farnily ol set-theoretical operations with the
additional property that the resulting object naturally exists
in a conceptual universe which turns out to be a structure in
the sftict mathematical sense.12 There are no sieves in Herma,
which is why we can speak oi an abstraction process tâking
place lrom the set-theoretical universe of Herma to the alge-
braic one of Nomos Alpha.

4.2. Fron the golden section to generalized
Fibonacci sequences

In Herma the combining of a set-theoretical expression with
a flow-chart ol operations ("klot of interest") impôses a
given sequence of sets. In principle thete are several possi-
ble sequences, but once the stafiing operation is chosen the
sequence is completely determined. The same phenomenon
takes place in Nozos Alpha,but in more abstract terms. Here
the composû develops a group-theoretical mechatism that
imposes a specific ordering within the family of all possible
group hansformations. This ordering acts in a similar way as
above, in the sense that the initial conditions completely
determine the sequence of abstract events. In this case.
however, Xenakis utilizes a generalized notion ofthe classi-

IrThis cyclic group structwe is now commonly used by musicolo-
gists working in the field ofmusic represeûtation and formalization.
I1 must be stressed that Xenakis has been historically one ofthe first
composers to analyze the relevânce ofthe concept ofcyclic groups
in music. Note that this idea has been developed independently by
the American theorist and composer Milton Babbitt, who had a
great influence or the set-theory apptoaches on music analysis and
composition.
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cal Fibonacci process, which is applied to group elements
instead ol integers.

We have seen that Xenakis creates sequences ofrotations
simply choosing two elements ofthe group and combining
them according to a Fibonacci law This process affects
lhe in-time domain when the same operation is applied on
abstract sound complexes featudng specific sonic character-
istics, like intensity, density and notably, duration. The very
abstract character of the Fibonacci process n Nomos Alpha
raises the problem of what would mean, in such a context,
the concept of golden section that has a more concrcte
meaning in the case of Hermo.In fact, the ratio between two
successive density values appearing in the opening of the
piece (1.73, 2.80, 4.53, 7.32, etc.) all correspond to the
golden mean. We should note that the golden section can be
lound in numerous works by Xenakis.r3

4.3. Abstraction levels in the outside-of-time/in-time
dichotomy: the "logical time"

As in the case of the set-theoretical flow-chart organization
used tn Hetma, the use of Fibonacci sequences in Nomos
Alpha acnally leaves the outside-of-time domain, and natu-
rally belongs to a thir4 intermediate, temporal category that
we called the logical time.

To use Xenakis' terminology, sets as well as "sound com-
plexes" belong to the outside-of-time domain. Their trarrsi-
tion into the in-time domain rs actually not obtained directly,
but through an intermediary domain that we have called,
above, logical time. Xenakis does not directly discuss such a
category - except perhaps in passing, in a remark concern-
ing temporal succession (Xenakis, 1992, pp. 157, 160).ra A
final examination of the compositional mechanisms reveals
that, in Herma jrr:st as it Nomos Alpha, Xenakis first intro-
duces a logical order ofsuccession, before rendering it in the
inlime domatî.The algebraic nature ofthe logical temporal
process in Norzos I lpha, that operates in two different levels
(sound complexes organization and sieve-theoretical struc-
turing ofpitch materials) clearly represents an instance ofths
abstraction that links the two compositional processes.

5. Conclusion
As mentioned in the lntroduction, our computational models
cannot be considered as an analysis of these musical works,
at least not in the meaning usually attached to that word in
ûaditional musicology. Nevertheless, the aralytical relevance
of the computer-aided model is evident if we agree that a
musical work is a "fie1d of potentialities," only a small part
ofwhich comes to be actually realized in a given piece. This

13 See, e.g., Baltensperger (1995).
raXenakis also discusses the idea of a
outside-of-time al],d i -time that of the
however distinct from otx logical time.

third category besides
temporal. 'fite latler is

is particularly cleu in Nomos Alpha. The implementation
makes evident that the special loops Xenakis chose as the
skeleton for the macro-form ol the piece, are not only the
most interesting ones, in terms oflength and degree, but they
also are the most frequent ones built into the system he had
set up for himself. This suggests that the macro-form ol
Nomos Alpha, of\en considered as a degree offîeedom ofthe
composer, is probably one ofthe greatest constraints imposed
by the system itsell Concerning É1enza, we emphasized the
gap between Xenakis' theoretical description and the final
score. The fact that the compos€r fiequently used stochastic
distributions for selecting the musical material shows that the
implementation is a necessary step toward a deeper discus-
sion on the possibilities ofthe system.

Despite some practical differences in the implementation
process of Ilerzrc and Nomos Alpha, our approach involved
the use ofthe computer in both cases, not as a mean ofcon-
frrming or refuting Xenakis'theories, but as a basically
heuristic tool.]s Of course, it could be axgued that our con-
clusions concerning the abstraction process from flerna to
Nomos Alpha could have been proposed without computer
experiments. Nonetleless, the modeling gave us a chance to
explore a number of common points at different levels of
abstraction.

The fact that no other work in Xenakis' repertoire can be
as straightforwardly linked to a theoretical d€scription of its
genesis does not mean, we believe, that the approach we
propose could not be applied to, say, stochastic or strategic
music. In other words, we consider that computer-aided
analyses axe exhemely useful heuristic tools that can provide
a new approach in musicological research. They make it
easier to discuss more objectively the theoretical aspects of
the formal compositional process togeth with its actual
musical realization.
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