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Abstract

Can real-time interactive systems be automatically timed tested ? This work
proposes an answer to this question by providing a formal model based test-
ing framework for Interactive Music Systems (IMS).

IMSs should musically perform computations during live performances,
accompanying and acting like real musicians. They can be score-based, and
in this case must follow at all cost the timed high-level requirement given
beforehand, called score. During performance, the system must react in
real-time to audio signals from musicians according to this score. Such goals
imply strong needs of temporal reliability and robustness to unforeseen errors
in input. Be able to formally check this robustness before execution is a
problem insufficiently addressed by the computer music community.

We present, in this document, the concrete application of a Model-Based
Testing (MBT) framework to a state-of-the-art IMS. The framework was
defined on purpose of testing real-time interactive systems in general.

We formally define the model in which our method is based. This model
is automatically constructed from the high-level requirements and can be
translated into a network of time automata. The mixed music environment
implies the management of a multi-timed context and the generation of mu-
sically relevant input data through the testing framework. Therefore, this
framework is both time-based, permitting durations related to different time
units, and event-driven, following the musician events given in input.

In order to test the IMS against the user’s requirements, multiple options
are provided by our framework. Among these options, two approaches, of-
fline and online, are possible to assess the system timed conformance fully
automatically, from the requirement to the verdict. The offline approach,
using the model-checker Uppaal, can generate a covering input suite and
guarantee the system time reliability, or only check its behavior for a specific
or fuzzed input sequence. The online approach, directly interprets the model
as byte-code instructions thanks to a virtual machine. Finally, we perform
experiments on a real-case study: the score follower Antescofo. These exper-
iments test the system with a benchmark of scores and a real mixed-score
given as input requirements in our framework. The results permit to compare
the different options and scenarios in order to evaluate the framework.

The application of our fully automatic framework to real mixed scores
used in concerts have permitted to identify bugs in the target IMS.
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Résumé

Est-il possible de tester automatiquement le comportement temporisé des sys-
tèmes interactifs temps réel ? Ces travaux proposent une solution en four-
nissant un ensemble d’outils de test basé sur modèles pour Systèmes Musi-
caux Interactifs (SMI).

Les SMIs doivent calculer et réagir pendant une performance musicale et
ainsi accompagner les musiciens. Certains de ces SMIs peuvent être basés
sur partition et doivent, dans ce cas, suivre à tout prix les contraintes tem-
porelles imposées par le document haut-niveau appelé partition. En somme,
pendant une performance, le système doit réagir en temps réel aux signaux
audio venant des musiciens en suivant cette partition. Ceci demande au
système une forte fiabilité temporelle et une robustesse face aux erreurs pou-
vant arriver en entrée du système. Hors, la vérification formelle de propriétés,
comme la fiabilité temporelle avant l’exécution du système lors d’une per-
formance, est insuffisamment traitée par la communauté de l’informatique
musicale.

Nous présentons dans cette thèse, la réalisation d’un ensemble d’outils
de test basé sur modèles appliqué à un SMI. Il est à noter que ces outils
de test ont été définis formellement dans le but de tester plus généralement
le comportement temporelle des systèmes interactifs temps réel prenant en
compte des évènements discrets et des durées définissables sur des échelles
multiples.

Pour ce résumé nous présentons rapidement l’état de l’art de nos travaux
avant d’introduire la définition de notre modèle créé pour spécifier les aspects
évènementiel («event-triggerred») et temporel («timed-driven») des SMIs.
Ce modèle a la particularité d’être automatiquement construit depuis les
conditions temporelles définies dans un document haut-niveau et peut être
traduit vers un réseau d’Automates Temporisés (TA). Dans le cadre de la
performance musique mixte électronique/instrumentale nous avons introduit
une notion de durée multi-temps gérée par notre modèle et une génération de
trace d’entrée musicalement pertinente par notre ensemble d’outils de test.

Pour tester un SMI selon les différentes attentes de l’utilisateur, notre
ensemble d’outils a été implémenté avec plusieurs options possibles. Parmi
ces options, la possibilité de tester automatiquement, selon une approche
différée ou temps réel, la conformité temporelle du SMI est proposée. En
effet, l’approche différée utilise des outils de la gamme du logiciel Uppaal
[44] pour générer une suite de traces d’entrées exhaustive et garantir la con-
formité temporelle du système testé. Il est également possible de tester
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une trace d’entrée particulière ou une version altérée («fuzzed») de la trace
idéale définie par la partition. L’approche temps réel interprète quand-à elle
directement le modèle comme des instructions de byte-code grâce à une ma-
chine virtuelle. Finalement, des expériences ont été conduites via une étude
de cas sur le suiveur de partition Antescofo.

Ces expériences ont permis de tester ce système et d’évaluer notre en-
semble d’outils et ses différentes options. Ce cas d’étude applique nos outils
de test sur Antescofo avec succès et a permit d’identifier des bogues parfois
non triviaux dans ce SMI.
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Chapter 1
Introduction

Mixed music is concerned with musical pieces involving human and electronic
devices, playing together. The music workflow is generally divided in two
distinct steps - composition, where pieces are thought and scores written;
and performance, where musicians interpret a score and shows take place.
Following this division, mixed music and even computer music systems fall
into two categories, usually distinct:

1) Music authoring systems, used to write a score and/or compose a music
piece, and

2) Real-time performance systems, for live execution of a piece, interact-
ing with musicians.

The formers require representations for providing a sufficient expressivity to
composers, borrowing tools on - formal languages, constraint programming,
visual programming languages - from the literature to deal with such a prob-
lem. The latter systems are real-time and must be efficient, they use lower
level data and fast algorithms to tackle their challenge.

As a consequence, the use of formal methods (in particular static proce-
dures) is far more developed for the authoring than for real-time systems.
However, these second systems are used in concerts and a good reliability is
required to ensure the system expected behaviors for any sequence of inputs
(in particular with musicians interpretations and errors). Moreover, the real-
time performance systems assessment is usually manual, an implementation
of the system is checked during a rehearsal by an auditive mean and on few
inputs performed by musicians. It is not accurate and cannot guarantee a
good behavior of the system at show time for every musician’s performance.

1



2 CHAPTER 1. INTRODUCTION

In this work, we consider score-based Interactive Music Systems [81, 19]
(IMS), testing the system Antescofo in a case study. Such systems work
with a mixed score, written in the IMS’s Domain Specific Language (DSL),
which describes the input expected from human musicians, together with
the electronic output to be played in response. During a performance, a
score-based IMS aligns in real-time the position of the human musicians to
the score, handling possible errors, detects the current tempo, and plays
the electronic part. It is therefore a reactive system, interacting with the
musicians under strong timing constraints: its output (generally messages
passed to an external audio application) must indeed be emitted at the right
moment, not too late but also not too early. Thus, the development and
use of such systems involve covering both the authoring and the real-time
problems.

There are two well known techniques to prevent a system from raising
errors [83, 32]. On the one hand, verification methods use formal tools
for system developments to prove that the system has no error. On the
other hand, testing techniques check already running systems in order to
detect and correct errors. Usually, the first methods require expertise to
express the expected requirements, but the second ones cannot guarantee a
system totally without errors since they verify errors only for a tested input
sequences.

Here, we use the Model-Based Testing [63] (MBT) technique, which pro-
vides formal methods for testing a system. MBT techniques require a system
specification called a model, in which the expected behaviors of the system
are specified via an abstraction which focuses only on one or few system as-
pects (time, input/output, communication ...). The goal of such techniques
is to assess the conformance of the system implementation we want to test,
called the Implementation Under Test (IUT), according to its model. A sys-
tem conforms its model, if for all input sequences, the IUT reacts as the
model.

Considering the spread of human-interactive systems in the fields of mu-
sic, internet of things, embedded systems. . . and the increasing importance
of such systems, the thesis motivation is to assess automatically the time
conformance of a system according to a specification described as a or sev-
eral time - interactive scenario(s). More precisely, the thesis objective is to
investigate if formal methods can be used to test embedded systems and
explore their application to IMS. Here, we consider embedded systems as
reactive systems which have to send actions at or after a given input.
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The first goal is to contribute in bridging the gap between authoring and
real-time systems in the context of IMS by providing techniques for improv-
ing the assessment of IMSs. Moreover, MBT assistance for score authoring
allows static analysis of the IMS’s realtime behaviors. A second goal is to use
the mixed score in order to automatically construct the IMS models, gen-
erate relevant input sequences, compute the model expected behaviors and
finally compare with the implementation reactions to assess its conformance.

To this aim, a test framework was implemented and is overviewed in
Figure 1.1. Briefly, two approaches have been implemented in the framework
and depicted on the left and right sides of the figure. Both of these testing
approaches start from an Antescofo mixed-score (on the top) and construct
automatically the corresponding model (1):

- Then, on the right, the approach (called offline) generates a set of tests
from the model and/or the mixed-score information (2). Once these
tests have been generated, the model is used to compute the corre-
sponding reference traces by simulation (3). Then, the same tests are
sent to Antescofo (4) in order to deduce the monitored traces. Finally,
the reference traces are compared to the monitored ones resulting in a
verdict (5), assessing whether the tests pass.

- On the left, the second approach (called online) uses a Virtual Machine
(VM) to execute the model. The test data is generated on the fly using

Mixed score + Performance info.

Model
σin

σref

Antescofo

σmoni

(5)

Verdict

(1) (2)

(3) (4)

V
M

AdtAntescofo

(5)

Verdict

ee

aa′

Figure 1.1: Two implementations of score-based IMS testing procedures: on
the left online method - on the right offline method.
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an adapter (Adt) and is sent to Antescofo, as the input of artificial
musicians. The monitored outputs of the system are compared online
to the reference trace (5), event by event. An error is reported if some
Antescofo reactions are not expected or missed in respect to the model.

The contributions of the thesis are:
∗ A formal definition of a model, called Interactive Real-Time Model

(IRTM) and discussed in Chapter 3, for specifying systems both timed-
triggered with possibly multiple time scales and event-driven, with a
sound translation into Time Automata model.
∗ A testing framework based on IRTM (Chapter 4) and implemented to

test real-time systems. Two approaches are managed by the framework,
in particular an offline approach involving systems from the Uppaal tool
suite.
∗ A virtual machine (described in Section 3.3) and a related online ap-

proach for generating the input sequence on the fly while the test of a
real-time system is running.
∗ A framework documentation and a data-set of regression testing for

Antescofo.
The MBT framework for score-based IMS was published in [76, 58]. The
formal definition of IRTMs and the MBT framework were published in [74].
In [75], we extended the last paper with the automatic model construction
and the online MBT approach.

This thesis was co-founded by the French Government Defense (DGA)
and the French Institute for Research in Computer Science and Automation
(INRIA), it was a part of the UMR 9912 Music and sound Sciences and tech-
nologies (SMTS) and was part of the INRIA MuTant team in the RepMus
team of the Institute for Research and Coordination in Acoustics and Music
(IRCAM). The thesis doctoral school was EDITE hosted by the University
Pierre and Marie Curie (UPMC) Sorbonne University.

The document is organized as follows: First, Chapter 2 presents the state
of the art, detailing the mixed score context (Section 2.1) and existing MBT
formal definitions (Section 2.2) used along the document. Thereafter, three
chapters present our main contributions:

• Our Interactive Real-Time Model (IRTM) is formally introduced in
Chapter 3. IRTMs specify the real-time systems we want to consider.
The IRTM principles, syntax and standard semantics are defined in
Section 3.1. In order to use existing test frameworks, a translation from
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IRTM into equivalent models is formally defined and its soundness is
proved in Section 3.2. Finally, a virtual machine executing such IRTMs
is presented in Section 3.3.

• Our testing framework based on IRTMs is defined in Chapter 4 and
follows the MBT workflow. The framework implementation for an ab-
stract real-time system is presented in Section 4.1. Contrary to usual
MBT frameworks, our procedure constructs automatically IRTMs from
a requirement using construction rules presented in Section 4.2. Fi-
nally, we focus on the generation of a set of input traces in Section 4.3.

• Thereafter, a case study details the testing framework application to
the score-based IMS Antescofo in Chapter 5. The IUT is presented in
Section 5.1, with its specification procedure (Section 5.2). Finally, Sec-
tion 5.3 reports the results computed from two experiments: a bench-
mark of scores and real score cases.
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Chapter 2
Testing Mixed Music Systems:
State of the Art

We dedicate this section to present the context and techniques related to
our work. Section 2.1 introduces the mixed music and its specific time. We
briefly list music systems before presenting Antescofo, the system under test
in our case study. Then, some existing tools for assessing such music sys-
tems are presented. Thereafter, Section 2.2 defines the model-based testing
formalization used through the document. We give our definition of model
and present existing methods and tools to perform model-based testing for
real-time systems.

2.1 Testing Mixed Music Systems

Music has always been an art of creativity in which sounds are produced
in time by one or several musicians. The music pieces complexity has not
ceased to increase, bringing through the history solid and expressive nota-
tions. These notations, as the western notation for the occidental culture,
established the sustainable power of the composer creations. With the intro-
duction of mixed music, involving electronic actions within musical pieces,
a new step forward in musical expressivity was required. As a solution, the
mixed score was created. It is an extension of the score document in which,
aside from the musician input events, a set of output electronic actions is
defined.

7
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In this work, a mixed score is a composer requirement containing: - one or
multiple sequences of ideal musician events and, sequences of actions timely
related to these events -. Moreover, a musician play (called a performance)
is considered as a sequence of event onsets (when the musician begins to play
effectively an event) and a duration before the next event onset. Notice that
rests are considered as event durations here.

In the remaining of this section, we detail some music notions focussing on
score and performance. They both contribute substantially to the realization
of a music piece and come from two main steps of a music creation process:
composition and performance.

2.1.1 Composition and Authoring Systems

During composition, composers invoke creative ideas and use complex tools
in order to make a piece. A myriad of documents are written, explaining the
piece to be playable following the creator intentions. The mixed score is one
of these documents and usually contains a specific unit for expressing its time
dimension, the relative time unit. Relative time unit is an abstract time unit
manipulated by composers in order to englobe every musician performance
of its piece. A duration in such a time unit is measured in beat and is relative
to the musician pace (called tempo) during performance. It is an important
musical dimension since relative time provides a freedom of interpretation
for musicians.

Figure 2.1: A mixed score specify-
ing one musician part and two elec-
tronic parts, these parts are called
staves. Each stave is a coher-
ent phrase of notes through musical
time (horizontal axis). The mixed
score represents the ideal sequence
of these staves, played “in concur-
rence”, i.e. altogether during the
performance.
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Example 2.1.1: In Figure 2.1, three musical parts are specified. These
parts, called staves, represent the ideal sequence in time (the horizontal
axis) of a piece. For instance, the musician stave (on the top) specifies one
note lasting one beat (called a quarter) with the pitch D5# and a label e1

(depicted above the note). The two next events last a half of e1 duration
(0.5 beat, called eigth) and have the pitch A4 and C4# for respectively e2

and e3. Notice that we deal with note pitches using american pitch notation.
This information is sufficient for musicians to play the stave (remark that
usually the labels are not specified).

However, there are implicit and strongly timed synchronizations accord-
ing to the vertical axis, since vertically aligned notes must be “played at the
same moment”. For example, the mixed score above specifies a simultaneous
play of e1 (by the musician) and ont1 (by the first electronic system). ♦

Authoring systems aim at simplifying the composer creation, by focusing
on offline and static solutions. The literature provides a number of visual
programming languages, Domain Specific Languages (DSL) or abstract rep-
resentation tools in order to bring to composers a manner of expressing their
imagination. As an example, we only cite a few of the existing authoring
systems: OpenMusic [27], PatchWorks [67] and Common Music [84], all based
on the programming language Common Lisp [86].

OpenMusic is a visual programming language allowing an utilization of
symbolic music representations. The system manipulates relative time (in
beat) which is not continuous as the physical time and allows the applications
of generic algorithms abstracting every possible performance. Currently,
in order to provide more dynamism to the authoring system, recent works
added a possibility to play a performance in OpenMusic [28]. These studies
tackle the lack of dynamism of such authoring systems and increase composer
possibilities by providing interactions with musicians.

2.1.2 Interactive Music Systems for Performance

During performance, musicians interpret a piece by altering the ideal event
durations written in the score. This interpretation decorates the piece with
performers’ emotions/intentions and translates the abstract time units (in
beat) of the score into physical ones (in seconds). The real-time context of a
performance makes it non-reproducible and unpredictable, two highly risky
properties for computer systems.
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Figure 2.2: The vertical line depicts
the positions of each musician or
electronic system on its stave. Here,
the musician is going to play e2, the
first electronic system should idle
(rest) and the second should play
ont2. Also, the line’s left side de-
picts the past (e1 for the musician)
and the right side the performance
continuation (e3).

Example 2.1.2: The Figure 2.2 depicts a performance using a vertical
line on the score. The line symbolizes the current position of the musi-
cians/systems on the staves. Hence, it implies that the notes before the line
have been played and those after should be played. We define a sequence
of played events by the dates when their onset were played relatively to the
beginning of the performance. As if a timer was launched at the first onset
and for each next onset its timer value is stamped onto them. For example,
a musician can play e1 at 0 second, e2 at 1 second and e3 at 1.25 seconds,
we call these values timestamps.

Each musician has a tempo in beat per minute (bpm) when playing a
performance which can be computed thanks to the translation function. In-
deed, 1 beat lasts 1 second with a tempo of 60bpm, 2 seconds with 30bpm

and 0.50 second with 120bpm. After computing the event durations using
the next event timestamp, it is so possible to deduce the musician pace. In
our case, e1 lasted 1 second and e2 0.25 second. Hence, e1 was played with
60bpm and e2 with 120bpm because it lasted 0.25 second for 0.5 beat in the
score. However in real cases, one different tempo is viewed for each musician,
therefore, the concrete position of each one is not aligned in a vertical line
with the other positions. ♦

Interactive Music Systems (IMS) aim at being involved in concerts. In
[81] and [19] a generic definition of IMS is presented. We depict this definition
in Figure 2.3. IMSs are systems interacting in real-time with performers
(musicians, dancers . . .) and audience (concert listeners, piece watchers . . .).
In order to interact with its environment, such systems use sensors and
actuators, a sensor detection inducing the system reaction. In this thesis,
we restrict this definition to a music application and define the IMS as an
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Interactions Interactions

Performers IMS Audience

Interactions

Figure 2.3: Interactive Music Systems in concerts, communicating via sen-
sors/actuators (based on Bert Bonger [19] definition).

electronic musician mimicking human ones. It implies several actions:
* input detections,
* real-time reactions to inputs, and
* anticipation of future actions.

IMSs detect inputs by listening to or tracking of performer(s). These sys-
tems are event triggered and must react instantaneously at an input de-
tection. Finally, they manage timed synchronizations or/and compute the
musician’s pace for anticipating and adapting their reactions accordingly. In
practice, pedals are used to synchronize with musicians (and compute easily
their pace) and stochastic models estimate future durations for anticipating
in real-time. Usually in reactions, IMSs can preform sound processing or
message sending to other audio applications.

The most demanding problem of IMSs is the temporal reliability. Indeed
they consider time as a critical resource since an output may have a precise
value and a precise date (not only the “what” but the “when” is primordial).
A IMS’s reaction must not be undertaken too early or too late.

As an example, we cite some IMSs in the literature, Formula [4], MAX-
MSP [78] and PureData [79] and Chuck [48].

MAX-MSP [78] and PureData [79] are visual programming language envi-
ronments. They are long-established and provide a simple way to construct
dynamic and reactive systems (called patches). A patch consists in plug-
ging functions or sub-patches to each other, which are sequentially linked
and executed in real-time. These visual data-flow languages are particularly
effective for hierarchical control and signal processing modules creation.

Chuck [48] is a strongly timed programming language that provides a
linker keyword called the Chuck operator => and an explicit notion of time,
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mapped into a number of audio samples, which can be manipulated in the
language. At runtime, a virtual machine, called Shreduler, runs all the Shreds,
Chuck programs, in concurrence with the audio management (the audio Unit
Generators (UGen) a synthesis network). Explicit time eases Chuck’s syn-
chronization and concurrence management, indeed, the Shreduler knows at
runtime when the Shreds wake-up and stop. This feature is called the time-
mediated concurrency which is appreciated by people enjoying live coding.

Jitter problem. A challenge for IMSs is to compute and produce sounds
while dynamically taking into account user wishes. Indeed, when produc-
ing continuous sounds, a minimum rate (around 20 ms) of data buffers has
to be provided by the system in order to avoid incoherent glitches in the
output (called “clicks”). However, IMSs should sometimes compute complex
algorithms for controlling and making the expected sound.

2.1.3 The score-based Interactive Music System Antescofo

Among IMSs we distinguish score-based IMSs, which are constrained to fol-
low a pre-specified timed scenario during performance (generally given be-
forehand as input). These particular systems must tackle the score following
problem, consisting in localizing a musician position on a given score during
performance.

We consider for our work the IMS Antescofo as the system to test in
our case study. Antescofo is a score-based IMS performing score following.
In order to introduce the system, we highlight the historical evolutions of
musical human-system interactions:

1939 The first interactions were created with the electronics part fixed on a
support (i.e. audio records) followed by musicians at performance. For
instance, “Imaginary Landscape No.1” by John Cage (1939), or later,
the piece “Kontakte” for piano, drums and tape by Karlheinz Stock-
hausen (1958-60). In the second piece, the interactions were expressed
as audio timestamps on the top of the score to synchronize and local-
ize the musicians according to the records as shown on the left of the
Figure 2.4.

1983 Score following algorithms are created to allow systems to compute the
current humans positions on a score, as in “Barry Vercoe” by Roger
Dannenberg (1983). In this piece, the system used an abstract MIDI
input to follow the musician performance.
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1990’s Hidden Markov Models [52] (HMM) introduce probabilities in speech
and sound processing. They enabled a finer and smarter score following
directly from audio waves and improved online algorithms.

2008 Algorithms enabled anticipative score following which extracts online
the position and the tempo of musicians. This idea is implemented
in the system Antescofo and is a step closer to a machine mimicking
human musician behaviors.

This evolution is depicted in Figure 2.4. It presents on the left an ex-
tract of “Kontakte” by Karlheinz Stockhausen (1958-60) and on the right an
Antescofo mixed score.

Figure 2.4: Evolution of score based IMS systems, on the left an extract
of “Kontakte” by Karlheinz Stockhausen, on the right an example of the
Antescofo visual interface Ascograph for an automatic accompaniment piece.

Antescofo was first developed as a MAX-MSP object to be embedded in a
patch (available in PureData too). Also, during performance, Antescofo usu-
ally waits for audio signal or midi input stream and sends output messages.
As a score based IMS system, Antescofo belongs both to the authoring and
real-time IMS systems:
• Authoring: Antescofo requires a mixed-score written in a Domain Spe-

cific Language (DSL), specifying the events to detect and the elec-
tronics actions to send. The system provides authoring features to
aid composers for writing an Antescofo mixed score enabling possible
complex algorithms in the piece.
• Performance: After processing the mixed score, Antescofo: - waits for

an event produced by humans, detects it, processes score following and
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finally reacts by sending a message -. All these actions are performed
online during performance.

A standalone version of Antescofo was implemented. The standalone
should use a virtual clock to run in a fast-forward fashion (i.e. there is no
real-time management). It means that instead of waiting for a duration in
real-time, the system notifies that an amount of time is passed to its virtual
clock and continues its execution.

2.1.4 Testing Interactive Music Systems

The context of music imposes us unpredictable and free input events received
from the environment. Even if a musician does not make any mistakes in
its play, the detection process by itself can erroneously detect wrong pitches
or altered durations. Because IMSs are involved in concerts with human-
musicians, they should not crash or report errors: “the show must go on!”
However, how currently are IMSs tested and verified to prevent from crashes
at show-time?

ideas
Score
Piece

Concert
Composition

Rehearsals

Performance

Feedback

Figure 2.5: General sketch of a piece lifetime.

Rehearsals. Figure 2.5 depicts a general sketch of a piece lifetime. First,
a score is created from ideas (and magics) by composers and several formats
of this score are written (paper, electronics or both). Second, rehearsals, in
a concert situation, test the IMS behaviors while the composers retrieve a
global feedback on the piece. Then, the performance takes place and the
show starts giving feedback for future performances.
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Although rehearsals are effective to assess the global feeling of a piece,
they are not actually dedicated to IMSs testing. Indeed, rehearsals are costly
in time and money (concert simulation) and cannot be disrupted by system
crashes. Moreover, multiple drawbacks can be highlighted:

- Only the performance played during the rehearsal is tested which differs
from the concert one.

- It is real-time, in the sense that the piece has to be played physically,
hence it takes one hour to test a single performance on a complete one
hour long piece.

- This method is tedious since the composers listen to the result to assess
the IMS.

Finally, the rehearsal is more an artistic judgement than a IMS debugging.
For this reasons another way to find and fix IMS bugs has to be found.

Given a system to test, called Implementation Under Test (IUT), two
well-known approaches consist in regarding or not the IUT’s source code in
order to test the system. White-box testing [88, 29] is based on traversing
the source code (or its abstraction) of the IUT. On the contrary, black-box
testing [88, 29] focuses only on the IUT inputs/outputs to test. We follow this
two approaches in order to introduce and present existing tools for testing
IMS. Moreover, we highlight the pros and cons for testing timed behaviors
of systems and estimating the tool efficiency in our context.

White-box testing Examples of usual white-box testing are assertions
inserted on the source code or fuzzing techniques which traverse instructions
with a set of system inputs in order to assess absence of errors.

Assertions are code instructions and check, using predicates or boolean
functions, variable values (input or output). They are useful to stop the
system when an unexpected value is detected. MAX-test package in MAX-
MSP [38] developed this feature for testing MAX patches. It provides an
automatic tool for testing IMSs but requires both the expected and IUT’s
values that have to be computed in another manner. Assertion techniques
are effective to test if a value is between bounds (i.e. for parameters) however
it is related to the code and fails to provide a manner to compute precise
expected values. Therefore, assertions cannot be used for testing temporal
properties.

Fuzzing techniques [51] have the advantage to be easy to set up since
its goal is to start with a single input sequence and mutate it, in general
randomly, to generate a set of inputs. The suite of input sequences is then
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stimulated on the IUT for monitoring its behavior. In [20], a fuzzing method
is used directly in production, testing an operating system. This technique
allows to test a wide number of programs with many input sequences. More-
over, they use constraint solvers and keep track of the instructions tested
to mutate the best input and optimize the coverage of the input trace suite
generated. However, only crashes and critical errors are checked with fuzzing
techniques and, similarly to assertions, these techniques fail to provide ex-
pected values during the test. Although random generation is important for
testing because it always raises unexpected errors, this generation is ineffec-
tive for covering code (i.e. executing all the instructions of a large code).
Finally, this technique cannot test the IUT’s temporal behaviors.

Black-box testing We focus the presentation of black-box testing tech-
niques on Model-Based Testing (MBT) techniques. A model is a simple
specification of the IUT, abstracting few of its aspects. Models usually are
human readable graphs, in which nodes abstract IUT states and transitions
IUT observable behaviors between states. The goal of a model is to give
an easy specification regarding some characteristics of the system, i.e. its
communications, its time behaviors, its input/outputs and be able to make
formal reasonings.

This method is the solution we have chosen to test the IMS Antescofo.

Some works on modeling the IMS i-Score [7, 6] have been produced.
They use timed automaton or petri-net models for verifying the timing and
communication behaviors of the IMS. However, these models of i-Score focus
on reasoning about formal model properties rather than IMS testing.

Usually, the main limitation of MBT is the manual construction of mod-
els that is tedious and error prone. However, MBT is effective to specify
temporal behavior. For our work, we follow MBT techniques for testing IMS
and designed an automatic solution to ease the model constructions.

2.2 Model of Timed System

Model-based testing (MBT) [63] is a formal method to test whether a sys-
tem conforms a specification. In the remaining of the document, we call
specification or model an abstract representation of a concrete system. A
model allows to reason automatically on system properties and is usually a
simpler description of this system. MBT uses models in order to generate a
suite of tests for assessing an implementation of the concrete system, called
Implementation Under Test (IUT).
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In the following of the section, we present relevant models to specify real-
time systems. Thereafter, the MBT method is detailed with two different
approaches of implementation.

2.2.1 Input/Output System Models

A model can be defined over a set of actions A abstracting the input/output
behaviors of a system. Usually, MBT methods are based on Finite State
Machines (FSM), an abstract machine with finite sets of locations, edges
and actions. A location abstracts a system’s state and its outgoing edges the
possible actions the system can do through states.

Model of Interactions Real-time systems are usually specified using
states (abstracting a state of the concrete system), transitions (possible ac-
tions from a state) and three kinds of action: input, output and internal
actions. These actions specify an input expectation, an output emission and
an internal system computation respectively. Input-Output Labeled Transi-
tion Systems (IOLTS) [87, 85] are models with finite sets of states, transitions
and actions. Each transition is labeled with an action specifying an interac-
tion with their environment. It is a simple model allowing the specification
of open systems where some inputs are expected and some outputs returned.

q0 q1 q2 q3 q4 q5
i1? τ o1! i2? o2!

i2?

i1?

Figure 2.6: IOLTS example: Playing oi when receiving the corresponding ii.

Example 2.2.3: The example in Figure 2.6 depicts an IOLTS model. The
model states are depicted with circles and the transitions are depicted with
arrows, starting from a state called source and guiding to the target state. An
action is depicted ii?, for receiving an event (modeling an event detection);
oi!, for emitting an output; and τ , for performing an internal action. The
double circled state (q5) designs the ending state, called exit state, which is
a state without outgoing transition.
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We specified in this figure a system reacting to two inputs i1 and i2.
The system must send the corresponding output oi only once for i ∈ {1, 2}.
However, if i2 is received before i1 then o1 is discarded. The model abstracts
an internal action τ performed before returning o1.

It is a typical IMS behavior which waits for event detections and needs to
anticipate or manage a missed event during performance. One can imagine
that inputs i1 and i2 are notes, chords or more complex event detections from
a listening machine. The internal action can abstract an effect computation
from the input i1 (for example echoing the input with a disturbance) resulting
to the output o1. o2 can be a simpler atomic command, to switch off the
output flow. Then for example, a possible model might describe that if the
first input is detected as expected (in a normal case), the effect is computed
for the output o1 . Otherwise, if the musician played i2 and missed i1, the
system has to omit this echo because the relevant input was not played, and
the output o2 is sent directly. ♦

Definition 2.1. A IOLTS is a 4-tuple 〈Q, q0,A,T〉 such as:
• Q is a non-empty and finite set of states,
• q0 ∈ Q is the unique initial state,
• A is a set of actions such that A = Ain ∪̊ Aout ∪̊ {τ}:

– Ain is set of input actions,
– Aout is set of output actions,
– {τ} is the generic internal action.

• T ⊂ Q× A×Q is a set of transitions.
with ∪̊ the union operation on disjoint sets.

We denote as i?∈ Ain, the wait for an input i and o!∈ Aout, the emission
of an output o. The set AV = Ain ∪̊ Aout is the set of observable actions,
these actions are visible from outside of the model. We commonly use µ to
denote an emission or a wait for a symbol in A, and α in AV.

A IOLTS is efficient in specifying input-output relations but time is not
considered in the model. Therefore, an infinite amount of time can last at
each state as for example between ii and oi in Figure 2.6.

2.2.2 Time Modeling

Timed Automaton (TA), defined in the 90’s by Alur and Dill [2], is well-
known for specifying time within a model. TAs are finite automata ma-
nipulating variables called clocks. A clock value domain is defined on the
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nonnegative reals R≥0, in order to abstract and manipulate time. Thus, ev-
ery duration or clock value is in model time unit (mtu). The principle of
TAs is that all clocks advance synchronously with the same amount of time
but can be independently set to 0. In the model, clocks are used through
constraints in two cases: guards, in transitions, to forbid an execution of
a transition when the constraint does not hold; invariants, in locations, to
permit their occupation only when the constraint holds. We present Timed
Automata with Input Output (TAIO) defined in [64] which is a TA with a
set of actions A = Ain ∪̊ Aout ∪̊ {τ} and urgent locations. An urgent location
is a location in which time is frozen and cannot advance.

`0

y ≤ 1.5

`1

`1 `2

i1?, x ≥
1, {x}

i2?
o1!

Figure 2.7: Principle of TAIO models.

Example 2.2.4: Figure 2.7 depicts a TAIO containing two clocks, x and
y. Each transition restricts the clock values with a guard and resets a set
of clocks when fired. For example the transition `0 to `1 can be taken only
if x ≥ 1 and resets x to 0, if not depicted the guard is true and the set is
empty. The duration lasted at a location can be restricted by an invariant,
depicted below a location (e.g. `0). Grey locations (such as `1) are urgent
and prohibit any time advancement.

The behavior of a TAIO is defined using a current state which is a pair
of: a location `, and a set of clock values. The initial state of the example is
〈`0, {0, 0}〉, i.e. the state at location `0 with a value of 0 for x and 0 for y.
From the initial state, there are two possible kinds of model movements: the
input i2 can be received, then the next state should be 〈`1, {0, 0}〉 or time
can elapse, say for 0.1 mtu (it cannot elapse more than 1.5 mtu), then the
next state should be 〈`0, {0.1, 0.1}〉. Notice that initially the input i1 cannot
be received by the transition `0 to `1 because the guard x ≥ 1 does not hold.

The model Figure 2.7 extends with time the specifications of the location
`0 in the previous example Figure 2.6. Here the time is explicitly detailed.
♦

Let X be the set of clocks and v : X → R≥0 be a clock valuation function
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over X . We denote (v + δ)(x) = v(x) + δ where x ∈ X and δ ∈ R≥0, the
clock valuation adding δ, and [Y ← 0]v the valuation assigning 0 to x ∈ Y
and v(z) to all z ∈ X for z /∈ Y.

Definition 2.2. A TAIO is a 6-tuple 〈L, `0,A,X , I, E〉 where:
• L is the set of locations with Lu ⊆ L the subset of urgent locations,
• `0 ∈ L is the initial location,
• A is a set of actions such that A = Ain ∪̊ Aout ∪̊ {τ}:
• X is the set of clocks,
• I : L → G(X ) is the function assigning invariants to locations and
• E is a set of transitions such that E ⊆ L × G(X )× A× U(X )× L

G(X ) is the set of guards on the clocks of the form x ./ c with x ∈ X , c ∈ N
and ./ ∈ {≤, <,>,≥}. U(X ) is the subset of X to reset.

We denote a transition ` −−−−→g,µ,Y
`′ and use v |= g to mean that the

valuation v satisfies the guard g ∈ G. The set U(X ) represented by Y is the
subset of X updated and assigned to the new valuation v′(X ) = [Y ← 0]v.
For the continuation, we let RX≥0 be the valuation of the set of clocks X .

According to the definitions in [64], the semantics of TAIO models is
defined with a Timed Input/Output Transition System (TIOLTS). TIOLTSs
extend IOLTSs with two kinds of transitions, discrete and temporal transi-
tions, they manage a set of clock valuations within the model’s locations and
actions. Such model is used to formally define how the TAIOs can behave
and how they can communicate and interleave each other.

Definition 2.3. A TAIO defines a TIOLTS as a tuple 〈S, s0,A,Td,Tt〉 where:
• S := {〈`, v〉 ∈ L×RX≥0 | v |= I(`)} is an infinite set. 〈`, v〉 is a pair of
a location and a finite set of clock valuations such that the valuations
satisfy the invariant of this location.
• s0 is the initial state 〈`0,~0〉, where ~0 assigns all the clocks in X to 0.
• Td is the set of discrete transitions: 〈`, v〉 −→µ 〈`′, v′〉 iff ∃` −−−−→g,µ,Y

`′ ∈ E
such that ` −→µ `′, v |= g ∧ I(`), and v′ |= I(`′) for v′ = [Y ← 0]v,
• Tt is the set of temporal transitions: 〈`, v〉 −→δ 〈`, v + δ〉 for δ ∈ R≥0,
iff ` /∈ Lu and for all 0 ≤ δ′ ≤ δ, v + δ′ |= I(`).

Note that a TIOLTS associated to a TAIO has an infinite set of states due
to the clock valuations domain and can only move through states with two
transitions. A discrete transition, which fires a TAIO transition performing
an action µ if the valuation v satisfies the guard g of this transition and
if the updated valuation v′ satisfies the target location’s invariant I(`′). A
temporal transition, which advances time and adds the flown duration δ to
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all the clocks valuations if this result satisfies the location’s invariant I(`)
for every duration δ′ < δ and if ` is not an urgent location.

`0 `1 `2 `3 `4

x ≤ 1.5

`5
i1?, {x} τ , {x} o1!, x ≥ 1 i2?, {x} o2!, x ≥ 1

i2?

i1?
o1!, x ≤ 1.5

Figure 2.8: TAIO example: playing oi in a bound of time after receiving the
corresponding ii.

Example 2.2.5: Figure 2.8 depicts a TAIO containing one clock x. This
example badly specifies a system that must send an output oi in the interval
of time [1, 1.5] mtu after receiving an input ii for i ∈ {1, 2}. Indeed, assuming
our current state in 〈`0, 1.6〉, the reception of input i2 must induce to fire the
transition `0 −−−−−→>,i2?,∅

`4. However, this transition cannot be fired because `4
invariant (x ≤ 1.5) does not hold for x = 1.6. Hence, the output o2 cannot
be emitted. This situation is called a deadlock, at this state no transition is
possible anymore. Moreover, x can become greater than 1.5 mtu in location
`2, it is possible because nothing forbids to increment x more than 1.5 mtu.
♦

Definition 2.4. A finite path (or a run) π of a TAIO is a finite sequence
of TIOLTS states obtained from the applications of temporal and discrete
transitions, i.e.:

π = 〈`0, v0〉 −−→δ1 〈`0, v0+δ1〉 −−→µ1 〈`1, v1〉 . . . 〈`n, vn〉 −−−−→δn+1 〈`n, vn+δn+1〉 −−−−→µn+1 〈`n+1, vn+1〉

A timed sequence ν(π) is obtained by projecting the transitions on a path
(omitting the states), and has the form: ν = δ1 ·µ1 · . . . ·δn+1 ·µn+1. A timed
trace σ(π) is obtained by projecting the transitions on a path and accumu-
lating the delays to compute the timestamps ti for each discrete transition.
A trace is a sequence of type (AV × R+)∗ and is computed with 〈αi,Σi

j=1δj〉
for 1 ≤ i ≤ n + 1 and αi a symbol of an observable action on a discrete
transition. A trace has the form: σ = 〈µ1, δ1〉 · . . . · 〈µn+1,Σ

n+1
j=1 δj〉.

We define some notations and functions in order to ease the manipulation
of a TAIO in the remaining of the document.
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Definition 2.5. Let T = 〈S, s0,A,Td,Tt〉 be a TIOLTS. Considering s, s′ ∈
S and si ∈ S, µi ∈ A, αi ∈ AV, oi ∈ Aout for all i ∈ {0, 1, . . . , n}, we denote:

s −→ s′
def= 〈`, v〉 −→ 〈`′, v′〉 ∈ Td ∪̊ Tt

s −→µ s′
def= 〈`, v〉 −→µ 〈`′, v′〉 ∈ Td

s −→µ def= ∃ s′. s −→µ s′

s 6−→ def= 6 ∃ s′. s −→ s′

s −−−−−−→µ1·...·µn s′
def= ∃ s0, . . . , sn. s = s0 −−→µ0 . . . −−→µn sn = s′

s⇒ε s′
def= s −−−−→τ ·...·τ

s′

s⇒α s′
def= ∃ s1, s2. s⇒ε s1 −→α s2 ⇒ε s′

s⇒o s′
def= ∃ s1, s2. s⇒ε s1 −→o s2 ⇒ε s′

s⇒ν s′
def= ∃ s0, . . . , sn. s = s0 −−→δ1 s1 −−→α1 . . . −−−→δn+1 sn−1 −−−−→αn+1 sn = s′

with ν = δ1 · α1 · . . . · δn+1 · αn+1.
s⇒ν def= ∃ s′. s⇒ν s′

- Let Υ be the set of all the timed traces in T.

- After(s, ν) → S def={s′ | s ⇒ν s′}, for a state s the function After re-
turns all its reachable states after the time sequence ν. We extend this
function for timed traces σ accordingly.

- Out(s) → (Aout ∪ R+)∗
def={o ∈ Aout ∪ R+ | s ⇒o}. The function Out

returns the observable outputs and/or durations, that are possible after
the state s.

Definition 2.6. A TIOLTS is deterministic if: ∀s ∈ S, if ∃s1, s2. s −→µ s1

and s −→µ s2 then s1 = s2.

In other words a system is deterministic if for all its states every outgoing
action has one and only one possible transition. Moreover, to simplify the
timed sequences we require:

• time determinism: if s −→δ s′ and s −→δ s′ then s = s′,

Example 2.2.6: We depict a possible path on the TAIO presented in Fig-
ure 2.8:

π1 =〈`0, {0}〉 −−→0.0 〈`0, {0}〉 −−→i1? 〈`1, {0}〉 −−→0.4 〈`1, {0.4}〉 −→τ 〈`2, {0}〉 −−→0.4

〈`2, {0.4}〉 −−→0.5 〈`2, {0.9}〉 −−→0.4 〈`2, {1.3}〉 −−→o1! 〈`3, {1.3}〉 −→4 〈`3, {5.3}〉 −−→i2?

〈`4, {0}〉 −−→1.5 〈`4, {1.5}〉 −−→o2! 〈`5, {1.5}〉.
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Its related timed sequence and timed trace induce the same sequence of
states:

ν(π1) = 0.0 · i1? ·0.4 · τ · 0.4 · 0.5 · 0.4 · o1! ·4 · i2? ·1.5 · o2! .

σ(π1) = 〈i1, 0.0〉 · 〈o1, 1.7〉 · 〈i2, 5.7〉 · 〈o2, 7.2〉.

Notice that we can formally detect the invariant problem of location `2.
Indeed, Out(〈`2, {0}〉) = {o1! } ∪ {R+} whereas Out(〈`4, {0}〉) = {o1! } ∪
{1.5}, `2 and `4 have different behaviors since the time can flow infinitely in
`2 but is bounded to 1.5 in `4. ♦

2.2.3 Network of Timed Automata.

In order to abstract huge real-time systems, component-based specification
[14] decomposes a model into several sub-models. The sub-models are easier
to construct than huge models and can specify a concrete system module.
Moreover, the different models can share the same set of symbols in order to
specify synchronization between them.

We consider a network as a composition of several models sharing the
same set of actions A. In [17, 14, 10], the Behavioral, Interaction, Priority
(BIP) operator generalizes the communications in a network model. It com-
pares formal synchronization principles as CCS and SCCS [71, 72] or CSP
[57] after defining them with BIP operators. In our case, we define a network
of TIOLTSs synchronized with a broadcast CCS method.

Example 2.2.7: Figure 2.9 depicts a network of three TAIO models. The
first model emits the symbols i1 and i2 following the sequence: i1! · 5.7 ·
i2!. i1 and i2 are then outputs for this model. The second model is the
TAIO example depicted in Figure 2.8. This model waits for i1 and i2 which
are inputs. The third model similarly waits for i1 and i2, and contains a
commit location to specify an atomic sequence of discrete transitions. When
in location C, the next transition of the network should be one of its outgoing
transitions, i.e. C −−−−−→>,o3!,∅

`2 here. The broadcast communication allows
to execute the emission and the two receptions of i1 simultaneously. One
possible sequence in this network is: i1 ·o3 ·0.4 ·τ ·0.4 ·0.5 ·0.4 ·o1 ·4 ·i2 ·1.5 ·o2.
Notice that in a network sequence, actions are denoted by their symbols
depicting the symbol synchronization between input/output actions. ♦

Let Lc ⊆ L be the set of committed locations in a TAIO. A commit
location defines the atomicity of a sequence of discrete transitions. Such a
location forbids the network to fire any transitions but one of its outgoing
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`0 `1

x1 ≤ 5.7

`2
i1!, {x1} i2!, x1 ≥ 5.7

`0 `1 `2 `3 `4

x2 ≤ 1.5

`5

`1

i1?, {x2} τ , {x2} o1!, x2 ≥ 1 i2?, {x2} o2!, x2 ≥ 1

i2? o1!

i1?
o1!, x2 ≤ 1.5

`0 C `2
i1? o3!

Figure 2.9: An example of a network of three TAIOs. The three models are
composed in parallel and communicate with input/output actions.

transitions. Our goal here is to define formally Uppaal networks. Therefore,
we present a composition of TIOLTS behaving as an Uppaal network, with
broadcast communications and commit locations. The behavior of a network
of n TAIOs is defined by a TIOLTS resulting from the parallel composition
of n TIOLTS, denoted T1‖ . . . ‖Tn. Each TIOLTS in the network is denoted
Ti 〈Si, s0i ,Ai,Tdi ,Tti〉 for i ∈ 1, . . . , n.

Definition 2.7. The network of n TAIOs defines the TIOLTS 〈S, s0,A,Td,Tt〉
where:
• S = S1 × . . .× Sn,
• s0 = s01 × . . .× s0n, denoted 〈s01 , . . . , s0n〉,
• A = ∪ni=1Ai,
• for i, j, k ∈ {1, . . . , n}, Tt is defined as:

sj −→τ s′j

〈s1, . . . , sn〉 −→τ 〈s̃1, . . . , s̃n〉

if ∃ sj = 〈`j , vj〉 such that, `j ∈ Lc or ∀si = 〈`i, vi〉 ∈ 〈s1, . . . , sn〉, `i /∈
Lc. Then s̃i = s′i if i = j and s̃i = si otherwise.
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a = b i 6= j sj −−→a!
s′j si −−→b? s′i

〈s1, . . . , sn〉 −→a 〈s̃1, . . . , s̃n〉

if ∃ sj = 〈`j , vj〉 such that, `j ∈ Lc or ∀sk = 〈`k, vk〉 ∈ 〈s1, . . . , sn〉, `k /∈
Lc. Then s̃k = s′k if k = j or k = i and s̃k = sk otherwise.
• for i, j, k ∈ {1, . . . , n}, Td is defined as:

s1 −→δ s′1 . . . sn −→δ s′n

〈s1, . . . , sn) −→δ (s′1, . . . , s
′
n〉

if ∀si = 〈`i, vi〉 ∈ 〈s1, . . . , sn〉, `i /∈ Lc ∪̊ Lu.

A network of n TIOLTSs is n TIOLTSs in parallel on a unified set of
actions. Notice that input and output actions may have the same symbols
allowing communications between models. A state of the network is a tuple of
n TIOLTS states denoted 〈s01 , . . . , s0n〉. A discrete transition has two cases,
an internal or synchronization transition. An internal transition is a discrete
transition labeled with τ performed by one TIOLTS. A synchronization of
models is one emission by a TIOLTS with none, one or several receptions
by others. It implies that all the receptions are done simultaneously when
several models wait an emitted symbol. Discrete transitions are fired if
none of the TIOLTS states are in a committed location or the current source
location (`i) is committed. A temporal transition advances time for the same
duration δ for every TIOLTS. Temporal transitions are fired if none of the
TIOLTS states are in a committed or urgent location.

No other restriction is defined, in particular notice that there is an ab-
sence of priority between several committed states, and between urgent and
normal locations for the synchronization case. These cases are nondetermin-
istic. Moreover a reception transition is fired without regarding the priority
of their source locations.

Timed Model Checking. After the construction of a model, one may
want to verify if a location is reachable (reachability property), if another
is non reachable (safety property), if there exists a path reaching the state
before 3 mtu, if after 5 mtu the state is reached for all the possible paths of
a model . . . These properties are expressible using languages of time logics
as in [22] where multiple languages are presented to express such properties.
Each language has an expressiveness and a completeness according to their
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syntax/semantics and their time interpretation (“pointwise” or “continuous”).
See for example the languages TCTL [1] and TPTL [3] which are compared
and detailed in [23].

Given a modelM and a correctness property p, model checking consists
in deciding whetherM satisfies p. Model checkers are efficient for the verifi-
cation of real-time systems, and the most famous are Uppaal [44], KRONOS
[26] or HyTech [55]. Each framework has proved their applicabilities to in-
dustrial systems and contributes greatly to the field of system verification.
For the thesis, we decided to use the Uppaal suite tool in order to use an
existing and reliable testing framework. According to this choice, we only
detail the systems related to these tools.

Uppaal [44] is a framework for designing, simulating and verifying a net-
work of TA. It supplies a useful graphic interface and tools for testing au-
tomatically a real time system. Uppaal1 is based on a network of TA ex-
tended with template models, variables and C++ features. The system has
been used to verify an amount of industrial applications such as in this non-
exhaustive list [24, 41, 69, 42, 61]. In particular, an Audio/Video system
[53] and an Audio/Video protocol [25], have been verified using Uppaal and
in both of these applications errors have been found and corrected.

For testing, the idea consists in generating a sequence of input traces
which covers a set of items of a modelM (some or all its locations, transitions
or possible paths). These covering properties of M can be reduced into
reachability problems decidable with model checking.

2.3 Model-Based Testing

Model-Based Testing (MBT) is a black-box technique observing exclusively
inputs and outputs for testing a system. In [88], MBT is defined as: “a variant
of testing that relies on explicit behaviour models that encode the intended
behaviour of a system and possibly the behaviour of its environment”. In
other words, MBT is a general technique for testing a real-time system, called
Implementation Under Test (IUT), with respect to a model. This model
specifies the good system’s behaviors and possibly the test environment that
is convenient to delimit test sessions. In our case when dealing with MBT, we
always consider the test environment aside system specifications in a model.

Usually and as depicted on the bottom of Figure 2.10, the IUT receives
events from a concrete environment (ENV) and reacts by sending actions. A

1http://www.uppaal.org/

http://www.uppaal.org/
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IUTENV

MsysMenv

event
action

input (i)

output (o)
Abstraction

Figure 2.10: Common scheme in model-based testing

first step in MBT consists in the creation of a modelM composed of a IUT
specification Msys and a model of its test environment Menv. Thereafter,
MBT aims at assessing the IUT conformance with respect to the model.
Conformance informally means that the concrete input and output exchanges
considered in the tests and observed between the IUT and its environment
can also be simulated in the model.

Concretely, the conformance is assessed using a huge set of tests called
a test suite. A test, created from the model, is defined as two traces: a
trace of inputs σin and its corresponding output trace σref . The latter trace
is called the reference trace and defines the expected outputs the IUT must
send during a simulation following σin. The concrete output trace returned
by the IUT is called a monitored trace σmoni.

A wide number of test frameworks/tools has been designed for test-
ing real-time, probabilist or hybrid systems. As a short list we can cite
SpecExplorer[89], TorX[12] and TGV[60]. Usually, a common workflow can
be seen and is introduced in Figure 2.11, depicted from system requirements.
The system requirements are defined in a document written with a natural
language and describing the system’s timed behaviors and constraints.

(i) From the system requirements, a model is constructed specifying the
system and its test environment.

(ii) The requirements are used to select the test criteria to guide further
test generations.

(iii) Then, these criteria are translated into test cases, a formal set of model
input and related outputs.

(iv) Thereafter, using the test cases and the model, a suite of tests is con-
cretely generated. A test is a trace of observable inputs σin (allowed
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in the test environment) and expected outputs σref computed from a
simulation of the specificationMsys.

(v) The IUT is then stimulated according to the input traces of the test
suite. This step results in the output trace σmoni observed from the
IUT in reaction to each input trace σin.

(vi) Finally, the test verdict is returned after comparing σmoni and σref for
each test.

Requirement

Menv

Msys

Criteria

Test Case
σin

σref

IUT

(i)

(ii)

(iii)

(iv)
(iv)

(iv)
(v)

Test script

Adaptor + ENV σmoni

Verdict

(v)

(vi)

Figure 2.11: The Model-Based Testing Workflow

In short, a MBT application needs a system requirement. The model is usu-
ally constructed manually by experts and a common criterion is a transition
coverage or a path coverage of the model by the test suite. The test cases
are an abstract test suite and defines, for the input sequences of the model
M, all its possible outputs and if these outputs are expected. The test cases
are then concretized via model simulations with a concrete test suite con-
taining σin and σref . A MBT test terminates on a verdict which pass or fail
according to the result of the conformance. If a verdict pass is returned, the
IUT conforms the modelM, otherwise an unexpected behavior is detected,
i.e. an IUT error is found.

To formalize system conformance, testing theory defines a set of system’s
runs as a test case. A system’s run, called a test, is a suite of input symbols
emitted, and output symbols waited. A test starts from the initial state ofM
and terminates in a verdict value. A test case is represented with a TIOLTS



2.3. MODEL-BASED TESTING 29

[64] (as in Definition 2.3) and, similarly to tests, starts from the initial state
of the model M and terminates in one of the two states: - pass and fail -
according to the model expectations. Remark that a test case sends events,
hence in Aout and waits for actions in Ain.

Definition 2.8. A test case T is a TIOLTS 〈S, s0,A,Td,Tt〉 such that:
• T is deterministic and has a finite behavior,
• S contains terminal states pass and fail, such that ` 6−→ for all 〈`, x〉 ∈

pass ∪ fail,
• for any state s ∈ S such that s 6∈ pass ∪ fail, either:

– s −→e! for some e ∈ Aout or

– ∀a ∈ Ain, s −−→a? .

A test case assures the completeness and the termination of tests by
preventing a terminal state from having a possible transition and requiring
the test case to be finite. Moreover, a test case requires that in any state
either: a wait on all actions of the system is possible, or, one event emission
is done. Thus, assuring the test to be non-blocking. Notice that the IUT is
assumed non-input-blocking too, i.e. the implementation accepts all inputs
at any time.

In timed test cases, time is considered as an output, i.e. the test case
observes that the system is elapsing some time. One may abstract time even
in un-timed cases, with a dedicated symbol δ, called quiescence, to specify
an absence of outputs, interpreted in the test case as: the system provided
no action, concretely implemented with timeouts.

Example 2.3.8: In Figure 2.12, two test cases are depicted for the TIOLTS
model on the top. Notice that the idea is simple and consists in choosing
an event to stimulate, and compute following the model, for all the possible
outputs, a next state that is either terminal or such that another event can
be emitted to continue the test.

Briefly, the test case on the left starts with the emission of input i1.
According to the model, o1 is expected after 1 time unit. Thus, receiving o1

when x < 1 leads to a terminal state fail. The test case leads to a state fail
if o2 is received too, because the model specifies an emission of o1 after the
input i1. However, if o1 is received when x ≥ 1, the test case continues by
sending the second input i2. Similarly to i1, the terminal state fail is reached
if o1 is received or an emission of o2 is received before 1 or after 1.5 mtu. ♦
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Figure 2.12: The two bottom models are two test cases of the TIOLTS model
above. The test cases start at the edge on the top and terminate at one of
the terminal states: fail or pass. The internal clock x is reset to 0 by every
edge.

Offline and Online Approaches. Given a modelM, compute its corre-
sponding suite of input traces Tin is not an easy task in practice. In particular
in case of an exhaustive suite generation, where all the possible input traces
must be computed. Indeed, the generation of an exhaustive suite induces
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to compute the coverage of a trace on a model in order to cover all the
model. Two approaches have been designed to tackle the covering problem,
an offline and online approach.

Offline Generation Approach

For MBT, offline approaches first generate the set of input traces Tin. Then,
each input trace in Tin is stimulated to the IUT. The approach has the advan-
tage of returning a covering suite according to a request of model coverage.
The input traces generated in Tin are usually small-sized, that ease the de-
tection of the cause when an error is raised. The traces are fast to execute
and adaptable to model variations. However, an offline approach drawback
is its complete exploration of models which often implies state explosions. A
second inconvenient of this approach is the impossibility to deal with non-
deterministic models.

In short, offline testing guarantees a suite of input traces with a good
coverage but restricts the expressivity of models. Moreover, the approach
needs to store the sets of generated traces which can explode in size.

CoVer [18] is an extension of Uppaal for automatically generating a set
of input traces covering the model following criteria. Given such criteria
(written in a DSL) and a Uppaal model, CoVer translates the criteria into
an observer that will guide the offline generation by monitoring the model
simulation. Indeed this observer is a finite state machine in which final lo-
cations are reached if the corresponding coverable item is effectively reached
in the simulation.

Online Generation Approach

The online approach puts in concurrence the on-the-fly simulation of the
model and the execution of the IUT. At each step, the algorithm checks IUT
outputs, chooses the next input or stops the test, returning a verdict pass
in order to validate the test. More precisely, an IUT output is timestamped
when received by the model. Then, the outputs are verified according to
the conformance relation (i.e. if these outputs are currently possible in
the model). If the outputs are expected by the model, the test continues,
otherwise a verdict fail is returned in order to raise the error. For this
algorithm, an input is either: a wait for an amount of time, or an input
symbol emission simulated in the model and stimulated to the IUT. Hence,
during an online approach, the test passes until an unexpected or an expected
but not received output occurs.
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Online approach allows nondeterminism in the model and in the strategy
of generation. For instance, the generation can randomly choose between a
wait, an event emission or a stop/restart. In practice, online tests run longer
than offline ones because the testers use the online aspect to run tests during
days. In this case, it is more complicated to detect why an error has been
raised. For the online generation, no a priory covering algorithm is developed,
therefore, the input suite generated has no coverage guarantee. Moreover,
due to its real-time context, online testing can hide problems during the
process and corrupt the tests (e.g. communication delays).

Tron [56, 44] is a second Uppaal extension developed for online testing.
Given a model, the observable inputs/outputs and the amount of seconds one
mtu lasts, the software (in a client/server manner) runs the online testing
process. An interface is given and the IUT must only manage communi-
cations via an adaptor which operates the input stimulations and output
redirections from and to Tron. To manage real-time problems (due to the
network communications or the execution time) a time-server is usable but
implies the IUT to be fully time-controllable. In other words, if the IUT man-
ages virtual clock and can simulate a time advancement, the test execution
can be synchronized by the time-server which can send amounts of time to
elapse to the IUT.

In the following, we present the testing theory for real-time systems.
Then, we define the formal conformance testing followed by our MBT frame-
work.

Testing Context. In [87, 85], the Input Output COnformance relation
(ioco) is formally defined. The relation ioco allows the conformance testing
of two systems, a IUT and its specification, represented with IOLTS models.
This conformance is relative to a class of test, observers and an implementa-
tion relation. The class of test is defined by the test suite considered in the
test, the observers define the manner in monitoring the specification and im-
plementation behaviors of models, and the implementation relation defines
the way of comparing two models behaviors. Given two IOLTS, a specifica-
tion M and an implementation iut, ioco defines: M is equivalent to iut if
any test cases in the class of tests lead to the same observations withM as
with iut. Formally:

iut iocoΥ M
def= ∀ν ∈ Υ, Out(After(iut, ν)) ⊆ Out(After(M, ν))
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for Υ a set of untimed sequences related all the traces of the model and
denoting After(m, ν) for After(q0, ν) with m a IOLTS = 〈Q, q0,A,T〉.

Timed ioco (tioco) is defined in [64, 80] similarly to its untimed coun-
terpart but interpreting timed traces. In [82], some timed conformance ex-
tensions are compared according to multiple ways of managing time flowing.
It results that the relation rtiocoe is more expressive (permits to test with
more precision), in particular than tioco, since it is related to a test envi-
ronment, allowing more possibilities for the users. In [56, 44], the definition
of timed MBT is based on rtiocoe which is the foundation of Uppaal suite
tools for testing real-time systems. Finally, the conformance is defined for
two TIOLTSsM and iut:

iut rtiocoe M ⇐⇒ ∀ν ∈ Υe, Out(After(iut, e, ν)) ⊆ Out(After(M, e, ν))

for Υe the set of timed sequences related to the possible traces of the test
environment model e and After(m, e, ν) the function computing the set of
states on the TIOLTS m‖e after the sequence ν with m and e two TIOLTSs.

We consider the same approach in our proper tests and implemented our
MBT framework following the conformance rtiocoe.

Conformance Implementation

Our MBT framework, presented in the document, implements the previous
conformance definitions and MBT presentations. This section details the
gap between formalization and implementation. In particular, we manage
timed traces and implemented an extension of the trace conformance as the
implementation conformance. Moreover, we denote:

• Generation : Menv → Tin to denote the generation of a suite of input
traces,

• Msys : σin → σref to denote the model simulation following the trace
σin, and computing the trace σref , and,

• IUT : σin → σmoni to denote the IUT stimulation following the trace
σin, and monitoring the trace σmoni. This step is the IUT execution.

Finally, let Tin be the class of test of a test suite, which is in our case the
generated suite of input traces σin possible in Menv. Strictly speaking, the
timed MBT conformance is defined:

iut rtiocoe M ⇐⇒ ∀σin ∈ Tin, IUT(σin) =Msys(σin) (2.1)
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where the suite Tin is more or less far from Υin, the set of all the input traces
ofM.

Finally, a test passes iff iut rtiocoe M for a generated set Tin, otherwise
it fails and ∃ σin ∈ Tin, IUT(σin) *Msys(σin). The last definition guarantees
that for an exhaustive set Tin, a verdict pass implies that iut rtiocoe M and
that errors are absent of the IUT for the input trace set tested.

Following this formalization, the next chapters define a model for IMS
(Chapter 3) from which a model-based testing framework is presented (Chap-
ter 4). Then (Chapter 5) details the application of our test framework to a
real IMS through several experiments.

Summary

In this chapter, we presented the context and techniques related to our work.
In particular, we defined the mixed music context and music systems charac-
teristics. We detailed the two different visions of the authoring and real-time
systems in order to position Antescofo, the system tested in our case study.
Then, we defined formally relevant models for real-time testing and presented
the conformance followed by our MBT framework. Aside, we gave existing
tools in the music and testing fields, which can be used on the purpose of
testing real-time music systems.

The goal of this work is to provide a formal and efficient method to
test real-time music systems. No existing framework has been designed yet
in the music field to fulfill this demand and MBT seems to be an efficient
procedure for testing such systems. However, although MBT procedure is
designed for real-time systems, music systems add more interactions with
its time environment than classical systems in the MBT field. In particular,
several time scales must be specified within the model. An investigation
is done in this work to apply MBT procedures to IMS and if successfully
applicable, to provide a framework for testing music systems.



Chapter 3
Event and Time Triggered Model

Modeling a system implies some abstractions to catch aspects of interest
without useless complications. In order to specify real-time music systems,
we presented in Section 2.2 several models dedicated to certain abstractions.

However, real-time music systems present an original characteristic: they
react to musicians according to their pace and must be both event- and
time-triggered. To be clear, we mean event-triggered when a system must
perform computations or send outputs at some input detection, and time-
triggered when such computations or output must be done after an amount
of time usually bounded (i.e. implemented through timers). Due to the
musical time, the management of several time units must be explicitly men-
tioned in a IMS model. Moreover, score-based systems present a particular
notion of determinism and often manage an ordered output set (e.g. acti-
vating/enabling effects before sending notes). These characteristics are not
easily specifiable in existing models, this drawback motivated us to design
and formally introduce ad hoc IMS modeling.

We describe in this chapter a way to formalize IMSs. In this aim, we
present in Section 3.1 our model called Interactive Real-Time Model (IRTM).
IRTMs are sets of Finite State Machines (FSM) dynamically activated and
running through logical instants. In order to use existing MBT tools, such
as the Uppaal tool suite [44, 56, 18], a translation in a network of TIOLTS
was required. This translation and a prove of its soundness are presented in
Section 3.2. Finally, to get the full benefit of our model, an implementation
of the formal standard semantics is presented in Section 3.3. The implemen-

35
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tation has the form of a Virtual Machine (VM) executing as a byte-code a
IRTM following the standard semantics described in Section 3.1.

3.1 Interactive Real-Time Model

This section introduces our dedicated model, called Interactive Real-Time
Model (IRTM), to meet the complex requirement of musical modeling and
specify real-time music systems. We focus this model on the specification
of temporal behaviors of such systems. A temporal behavior of real-time
music systems is deterministic but follows a non-deterministic environment
inducing relative time and event reactions.

In order to permit this specification, we define ordered sets of symbols
and explicit all the possible behaviors of a model. The order reflects the
IMS’s output priorities and allows to explicitly define the symbol with an
higher priority when several are detected simultaneously. This determinism
allows us to interpret a model simulation as a function returning the system
expected outputs for a given sequence of inputs.

Aside of this determinism, we added non-determinism to specify the test
environment model. A model of test environment is efficient to delimit test
sessions and defines the set of possible inputs considered in the tests. In
order to allow the specification of a set of input sequences, we provide two
non-determinism model behaviors: an emission of a set of symbols and a
wait for a duration δ in a time interval.

• The principles of IRTMs are introduced in Section 3.1.1.

• IRTM syntax and standard semantics are defined in Section 3.1.2.

3.1.1 Principles of Interactive Real-Time Models

Before defining the IRTM syntax and semantics, we introduce its main prin-
ciples. We recall that a modelM is divided in a system specificationMsys
and a test environmentMenv.

Ordered Input and Output Alphabets: IRTMs are defined over three
disjoint and ordered alphabets of discrete symbols:

* Evt , the input symbols (called event and denoted e),

* Act , the output symbols (called action and denoted a) and
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* Sig , the internal signals used for the communications and synchroniza-
tions between sub-components in the specificationMsys.

Moreover, we define that an internal signal has priority over events. The set
Evt contains events, sent byMenv and expected byMsys. On the contrary,
the set Act gathers actions, returned byMsys and caught byMenv. Finally,
the set Sig specifies communication signals between two model components
and are not observable in the input/output traces. However, do not confound
Sig and the action τ in TIOLTS, here, internal signals are used to specify
synchronizations and not internal computations of the IUT. The action τ is
not specified in IRTMs. We commonly use α to denote an emission of, or
a wait for, an observable symbol in Evt ∪̊ Act , and µ in Evt ∪̊ Act ∪̊ Sig .
We denote as µ?, the wait for a symbol or signal µ, and µ! the emission of a
symbol or signal µ.

Notice that we only consider discrete symbols and signals. Indeed, we
are interested in specifying a IUT timed behavior for a given input sequence.
Hence, we decided to not manage continuous events. Moreover, a real-time
music system is usually designed as shown in Figure 3.1. A IMS waits for
continuous or discrete events from the external environment (midi players,
sounds, gestures . . . ) and notices discretely a detection of symbolic events.

IMS

Continuous
treatment

Discrete
module

continuous discrete
ENV score

Figure 3.1: IMS (input and output) symbols management

For instance a IMS listening to the audio waves of musicians, uses a
score following [35] algorithm in order to map continuous sounds in discrete
score events. The discrete symbols are thus already defined and it is not an
additional work to consider them in the model.

Logical and Relative Time: Inspired by the synchronous language Es-
terel [13], a IRTM runs over logical instants. These instants are timestamped
with super dense time (from [77, 68]) of the form 〈t, n〉 ∈ R≥0× N, which is
a pair of: t ∈ R≥0, a physical timestamp in seconds and n ∈ N, a number of
internal steps. A IRTM behavior can be resumed in:
• advancing time until an event,
• stamping the date to set the beginning of the new instant,



38 CHAPTER 3. EVENT AND TIME TRIGGERED MODEL

• performing several moves logically instantaneously, incrementing the
second field of the super dense timestamp, and
• terminating the instant by advancing time again (when no more moves

are possible in the current instant).
Time advancements are specified with delays in IRTMs, each delay relates to
a time unit. Two kinds of time units are used, the physical and the relative
time units.

Definition 3.1. We let Φ be a relative time unit related to a curve fΦ which
defines its pace at a given timestamp. In our context, we call this function
a tempo curve, and refer to the pace of a time unit as its tempo in beat per
minute (bpm). We assume the tempo curve associating an instant tempo
value to each timestamp t in physical time. The conversion of a duration d
from a relative time unit into physical time is obtained by integration over
[0, d] of the inverse of fΦ.

We denote dΦ a duration d in the relative time unit Φ and phy the physical
time unit. The same notation is used for timestamps (or dates) and tΦ is a
timestamp in the relative time unit Φ. Moreover, by abuse of notation, we
let Φ : R≥0 → R≥0 be the evaluation function of Φ. This function evaluates
a duration dΦ in a relative time unit into its equivalent duration in physical
time dphy for its current tempo.

Example 3.1.9: With such durations, the delay 1phy lasts 1 second but
1Φ1 lasts 1 second with a tempo of 60bpm, 2 seconds with a tempo of 30bpm

and 0.5 second with a tempo of 120bpm. ♦

Multi time units are quite useful in musical contexts, in the following
of the manuscript, we consider relative traces, i.e. traces with durations in
relative time unit. This definition extends the previous trace Definition 2.4
used in case of traces with durations in physical time.

Definition 3.2. Given a time unit Φ, a relative timed trace σΦ is a sequence
of triples 〈αi, tΦi , pΦ

i 〉, where:
• αi ∈ Evt ∪̊ Act , is an observable symbol,
• tΦi ∈ R≥0, is a relative timestamp, and
• pΦ

i ∈ R≥0, is the tempo value of fΦ at the timestamp tΦi .
Such that for all i, tΦi ≤ tΦi+1 and if tΦi = tΦi+1 then pΦ

i = pΦ
i+1.

Remark that this definition implies a stepwise constant tempo curve for
the relative time units defined by a relative trace. In the following of the
document, we use the performance time as the time unit which relates to the
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tempo curve of musicians (i.e. the pace defined by the input trace during
a IRTM simulation). It is the time unit used by default and we denote a
duration d in performance time with dσin . For simplifying future notations,
we denote the evaluation function Φ(d) to mean dphy if d is in physical time,
or Φ(dΦ) in case of relative durations.
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`22

`31 `32 `33 `34

e1! e2!

e1? [1, 1.5] a1!

e2?

e2? [1, 1.5] a2!

Figure 3.2: IRTM principle: A IRTM is a set of Finite State Machines (FSM)
activated dynamically and has one initial location (`0). The model is mostly
deterministic and specifies explicitly time progression through a simulation.

Example 3.1.10: Figure 3.2 depicts an example of IRTM. During sim-
ulation, the current model locations are called control points and target a
IRTM location together with the amount of time it stayed at this location.
The control points are stored in a list and evolve as threads in a coopera-
tive scheduling. That is to say, a control point executes one of the outgoing
transitions of its targeted locations while it can.

Initially, the first control point is in the initial location `0. Diamond
locations (`0 and `1) depict a transition creating dynamically a control point,
after its execution, the first control point is in location `11 and a new one is
in `1 and pushed in the list of control points. According to the cooperative
scheduling, the first control point keeps the lead. It executes the two next
transitions which emit the symbols e1 and e2 stored in a set. Then, the
control point terminates by deleting itself from the list of control points.

The second control point executes similarly the dynamic creation in `1. In
`21, it can receive two symbols, e1 and e2, both emitted in the current logical
instant. It receives the highest priority symbol, say e1, and is transferred
in `22. Because the next transition is a wait for a delay (between 1 and 1.5
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performance time), the control point is preempted (called suspended).
The control point in location `31 can receive e2 and is similarly suspended.

Every control point is suspended and no more transition can be executed in
the logical instant. The instant is terminated and a delay δ ∈ [1, 1.5] in
performance time is elapsed. At this time, the two control points are un-
suspended and can execute the wait transitions in order to send the actions
a1 and a2. Notice that, because of the list, the control point in location `22

has first the lead. ♦

3.1.2 Syntax and Semantics

This section defines formally the syntax and the main semantics of IRTMs.
A IRTM has the form of finite state machines with message passing, dynamic
thread creation (alternations) and durations.

IRTM Syntax

Definition 3.3. A FSM is a tuple 〈Σin, Σout, L, `0, ∆〉 where:
- Σin is the set of inputs representing the local input alphabet,
- Σout is the set of outputs representing the local output alphabet,
- L is a finite set of locations,
- `0 ∈ L is the unique initial location and
- ∆ is a finite set of transitions.

Each transition in ∆ has a source location denoted `, and one or two
target locations denoted `′ and `1‖`2 respectively. Moreover, ∆ = ∆u ∪̊ ∆s,
the set of transitions is partitioned into: the subset of urgent transitions,
denoted ∆u, that must be fired without delay; and the subset of suspending
transitions, denoted ∆s, whose execution may require some time to flow.

Symbol priorities. Notice that the alphabets Σin∪Σout are not necessar-
ily disjoint and we assume a total ordering ≺ over Σin ∪ Σout. This will be
used to define a priority for the receptions of symbols in the FSM. We also
assume a partition of output symbols into: Σout = Σsig

out ∪̊ Σext
out. Symbols of

Σsig
out represent internal signals in Sig , whereas symbols of Σext

out are dedicated
to the external environment in Act : they are emitted but not captured by
the FSM (they are symbols of the output traces σref). Recall that Sig and
Act are input and output symbols defined Page 36. Moreover, Σext

out∩Σin = ∅.
The symbols of Σsig

out and Σext
out will be emitted with different priorities by the

FSM, to reflect the semantics of IMS on output actions.
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` `′
µ!

`

`1

`2

Figure 3.3: emit- and and -transitions.

Urgent transitions. There are two kinds of urgent transitions in ∆u

called emit-, and and -transitions. They are depicted in Figure 3.3, where
circles represent standard locations, diamonds are source-and locations and
grey locations are instantaneous, so-called urgent locations.

1. An emit-transition, in L×Σout ×L, is denoted ` −−→µ!
`′ with `, `′ ∈ L

and µ ∈ Σout. It provokes the emission of a local output symbol,
followed by the change of the current control point from location ` to
`′. We say that a location ` emits a symbol µ ∈ Σout if there exists a
transition ` −−→µ!

`′ for some location `′. Remark that the source of this
transition cannot have another branch, if µ ∈ Σext

out.

2. An and -transition, or alternation, in L × L2, is denoted ` −−−→and
`1‖`2,

with `, `1, `2 ∈ L. It creates dynamically a new control point. The
current control point, initially in `, is transferred to the first location `1,
while a new concurrent control point is created in the second location
`2. The source of this transition cannot have another branch.

` `′
µ?

` `′
[d,d′]

Figure 3.4: recv - and wait-transitions.

Suspending transitions. There are also two kinds of suspending transi-
tions in ∆s, called recv - and wait-transitions. These transitions are depicted
in Figure 3.4.

1. A recv -transition, in L × Σin × L, is denoted ` −−→µ?
`′ with `, `′ ∈ L

and µ ∈ Σin. The transition waits for the reception of a local input
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symbol, and then changes the current control point from location ` to
`′. Because µ can already be emitted during the current logical instant,
the recv -transition may be urgent (and may be fired without delay).

2. A wait-transition, in L × R>0 × R>0 × L, is denoted ` −−−→[d,d′]
`′, with

` and `′ ∈ L and 0 < d ≤ d′ ∈ R>0 are durations expressed in the
same time unit. It waits for the expiration of a delay before changing
the control point from location ` to `′. Such a transition can only
be fired when the control point has spent at least d time units in `.
Moreover, it is required that when d′ time units have been spent in `,
then this transition, or another outgoing one from ` must be fired (it
is the analogous of TAIO invariants).

Branching transitions. We call a branch ` ∈ L, all the transitions with
the source location `. A branch is the dual of an and -transition, and rep-
resents the passing of the control point from the source location to one and
only one of the target locations of the branch (a branch could be called
or -transition to this respect).

`

`1

`2

µ
1 ?

µ 2
?

`

`1

`2

µ?

d Φ

`

`1

`2

µ
1 !

µ 2
!

Figure 3.5: Examples of branches.

Example 3.1.11: We depict in Figure 3.5 some examples of branches. Dark
rectangle locations depict non-deterministic locations. From left to right we
used branch to express: (a) a wait for the first occurrence on several local
input symbols, (b) a wait for an event until a timeout, (c) a non-deterministic
emission of local output symbols. ♦

A branch will execute emit-transitions first, therefore, it makes no sense
to branch suspending transitions with an emit-transition. Moreover, a branch
with several wait-transitions is relevant if [d1, d

′
1]∩ [d2, d

′
2] 6= ∅ otherwise the

later interval is useless and will be skipped by the earlier. In order to prevent



3.1. INTERACTIVE REAL-TIME MODEL 43

from death transitions which are never executed for any input sequences, we
prohibit these two last cases. Notice that the source location of one or several
wait-transitions has to fire a transition when d′ is reached. Hence, only the
minimum of all the upper bounds of wait-transitions is taken into account,
in other words, when there are several wait-transitions [di, d

′
i] in a branch,

only min(d′i) is considered.

Location kinds. The set of locations are partitioned in several disjoint
subsets. A location is defined from the types of its outgoing transitions. We
define L ⊆ Lu ∪̊ L∞ ∪̊ Ls, with:
(1) Lu, the subset of urgent locations, contains source locations with strictly

one outgoing urgent transition.
(2) L∞, the subset of non-deterministic locations, contains source loca-

tions of several outgoing emit-transitions.
(3) Ls, the subset of suspending locations, contains the other locations.

IRTM Standard Semantics

Let us now define formally the runs of the above FSMs. We consider a
model of superdense time [77, 68] with superdense timestamps of the form
〈tphy, n〉 ∈ R≥0× N, where tphy ∈ R≥0 is a timestamp in physical time called
logical instant, and n ∈ N is a step number inside this logical instant. Intu-
itively, several transitions may be executed during the same logical instant,
at different step numbers. The logical time will flow only when all the control
points are in sources of suspending transitions of ∆s.

Definition 3.4. A state of a FSM A = 〈Σin, Σout, L, `0, ∆〉 is a tuple
〈tphy, n,Γ, cp,Θ〉, where:
• 〈tphy, n〉 is a super-dense timestamp with tphy ∈ R≥0 and n ∈ N.
• Γ is the list of control points of the form 〈`, γ, β〉, where:

- ` ∈ L, is a FSM location,
- γ : dphy ∈ R≥0, is the time spent in `, and,
- β ∈ {>,⊥}, is a flag. When β = >, then the control point is
suspended.

• cp is a natural number in {1, . . . , |Γ|}, pointing to the current control
point in Γ, and,
• Θ is the subset of local symbols Σout emitted during a logical instant.

We will later use the operator :: to define both a join operation on the
list Γ and an element insertion in the set Θ.
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Standard Moves. In the remaining of this section, we will define moves
between states of A. The definitions are presented according to the standard
semantics, we can distinguish the moves by purposes:

- control point creation and termination: and - exit,

- synchronization: emit - recv - send,

- time management: expir - delay,

- cooperative scheduling: suspend.

To simplify the equations, the current control point (marked by cp) is under-
lined in the following states.

〈t, n,Γ::〈`, γ,⊥〉::Γ′,Θ〉 −−−→
and

〈t, n+ 1,Γ::〈`1, 0,⊥〉::Γ′::〈`2, 0,⊥〉,Θ〉 (and)

if there exists ` −−−→and
`1‖`2 ∈ ∆u.

〈t, n,Γ :: 〈`, γ,⊥〉 :: 〈`′, γ′, β′〉 :: Γ′,Θ〉 −−−→exit 〈t, n+ 1,Γ :: 〈`′, γ′, β′〉 :: Γ′,Θ〉
〈t, n, 〈`′, γ′, β′〉 :: Γ :: 〈`, γ,⊥〉,Θ〉 −−−→exit 〈t, n+ 1, 〈`′, γ′, β′〉 :: Γ,Θ〉

(exit)
if ` is an exit-location (has no outgoing transition).

〈
t, n,Γ :: 〈`, γ,⊥〉 :: Γ′,Θ

〉
−−−→
emit

〈t, n+ 1,Γ :: 〈`′, 0,⊥〉 :: Γ′, µ :: Θ〉 (emit)

if there exists ` −−→µ!
`′ ∈ ∆u with µ ∈ Σsig

out.

〈t, n,Γ :: 〈`, γ,⊥〉 :: Γ′,Θ〉 −−−→
expir

〈t, n+ 1,Γ :: 〈`′, 0,⊥〉 :: Γ′,Θ〉 (expir)

if (emit) is not applicable and there exists ` −−−→[d,d′]
`′ ∈ ∆s such that

Φ(d) ≤ γ ≤ Φ(d′).

〈t, n,Γ :: 〈`, γ, β〉 :: Γ′,Θ〉 −−−→
recv

〈t, n+ 1,Γ :: 〈`′, 0,⊥〉 :: Γ′,Θ〉 (recv)

if none of (emit) or (expir) can be applied and there exists ` −−→µ?
`′ ∈ ∆s

such that µ is minimal (wrt ≺) in Θ ∩ {µ′ | ∃` −−→µ
′?

`′′ ∈ ∆s}.

〈
t, n,Γ :: 〈`, γ,>〉 :: Γ′,Θ

〉
−−−→
send

〈t, n+ 1,Γ :: 〈`′, 0,⊥〉 :: Γ′, a :: Θ〉 (send)
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if all elements of Γ are suspended and there exists ` −−→a!
`′ ∈ ∆u with

a ∈ Σext
out and a is the smallest symbol of Σext

out emitted by a location of Γ.

〈t, n,Γ :: 〈`, γ, β〉 :: 〈`′, γ′, β′〉 :: Γ′,Θ〉 −−−→susp 〈t, n,Γ :: 〈`, γ,>〉 :: 〈`′, γ′, β′〉 :: Γ′,Θ〉
〈t, n, 〈`′, γ′, β′〉 :: Γ :: 〈`, γ, β〉,Θ〉 −−−→susp 〈t, n, 〈`′, γ′, β′〉 :: Γ :: 〈`, γ,>〉,Θ〉

(suspend)
if none of (and), (exit), (emit), (expir), (recv), (send) can be applied and there
exists at least one element in Γ which is not suspended or with a location
emitting a symbol of Σext

out.

〈t, n,Γ,Θ〉 −−−→
delay

〈t+ δ, 0,Γ + δ, ∅〉 (delay)

if no other move can be applied, where Γ + δ stands for {〈`, γ + δ,⊥〉 |
〈`, γ, β〉 ∈ Γ} and δ a physical time duration such that

a) δ > 0,

b) for all 〈`, γ, β〉 in Γ such that there exists ` −−−→[d,d′]
`′ ∈ ∆s, it holds

that γ + δ ≤ Φ(d′),

c) there exists at least one 〈`, γ, β〉 in Γ such that ` −−−→[d,d′]
`′ ∈ ∆s and

Φ(d) ≤ γ + δ.

The principle of moves is the following. Every element of Γ represents a
thread. Threads run in cooperative scheduling: every thread executes until
it gets suspended and then it hands over to the next thread in Γ with a move
(suspend). During a logical instant, the semantics chooses the moves in the
following order:

• Urgent transitions are fired immediately. It gathers the moves (and),
(exit) and (emit), except for emit-transitions which may be suspended
when the symbol to emit is in Σext

out.

• Except for (expir) moves, which can delay its execution if its upper-
bound d′ is not reached, suspending transitions must be applied im-
mediately when conditions allow:

(expir) A wait-transition is applied if the time already spent in the source
location, the second component of the current element of Γ, is
within the bounds defined for the guard of the transition. Apply
first the (expir) moves ensures a priority of time-expirations (i.e.
delays) over symbol receptions when the both are possible in a
branch.
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(recv) A recv -transition is applied if the expected symbol is present in Θ,
because it was sent during the same logical instant.

(suspend) A failure of these conditions causes the suspension of the thread
which changes the value of the flag to >.

(send) When all threads are suspended, the emit-transitions with sym-
bols of Σext

out can be executed, following the ordering ≺. This
strategy corresponds to the semantics of IMS which requires a
predefined ordering for the messages sent to the external environ-
ment.

(delay) The move (delay) lets a positive amount δphy of time flow, in ad-
equacy with the upper bounds d′ in guards of active wait-transi-
tions. A new logical instant is then started at the date times-
tamped at tphy + δphy, where tphy is the former logical instant, the
step counter is reset to zero, the threads of Γ are unsuspended
and the list Θ of sent symbols is flushed.

Note that the moves (emit) and (recv) may loop in the same logical instant
and that a suspended thread can apply (recv) even if suspended. Moreover,
we impose that the delay δ unlocks at least one wait transition, in order
to prevent consecutive applications of (delay). The only non-deterministic
choices are: the choice of the duration δ in (delay) when Φ(d) < Φ(d′), and
the choice of a local output signal to emit in the set Σsig

out, in (emit), when
there are several emit-transitions in the same branch. These choices are
delegated to the implementation and all the other moves are deterministic.

Deterministic Models. A FSM is called deterministic iff it contains no
branch with more than one emit transition, and for every wait transition
labeled [d, d′], it holds that d = d′ (we simply write d in this case). Moreover,
it must not contain two waits in a branch labeled with the same delay (i.e.
there must be no transitions ` −→d `′ and ` −→d `′′ with ` 6= `′′).

Run: Starting from the initial state s0 = 〈0, 0, 〈〈`0, 0,⊥〉〉, 0, ∅〉, a run π of
a IRTM A is a sequence of the form:

s0 −−→m1
s1 . . . sk−1 −−→mk sk

where s0, . . . , sk are states, and for all 0 ≤ i < k, si+1 is obtained from
si by the move mi+1. We extend TIOLTS’s timed sequences ν defined in
Section 2.2.1 for IRTM, i.e. being only the sequence of moves omitting
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intermediate states. Finally, we associate to the run π the output timed
trace σref defined as follows:

For all 0 ≤ i ≤ k, let ti and Θi be respectively the first and the last
components of si (i.e. the timestamp of the logical instant of si and the set
of accumulated symbols sent during that instant). Let 1 ≤ i1 < . . . < ip ≤ k
be the subsequence of all steps in π such that for all 1 ≤ j ≤ p, mij = (send)
and Θij \Θij−1 = {aj} ⊂ Σext

out, at the move ij , one output message aj ∈ Σext
out

was emitted. The trace σref is a physical time trace and contains the sequence
of pairs of the form 〈aj , tphy

ij
〉 for all 1 ≤ j ≤ p. Given a IRTM A, we denote

by L(A) the set of traces σref such that there exists a run π of A and σref is
associated to π.

`0

`11 `12 `13 `14

`21 `22 `23 `24 `25 `26 `27

`22

e1! 5.7 e2!

e1? [1, 1.5] a1! e2? [1, 1.5] a2!

e2?
a1!

Figure 3.6: IRTM example: This model comes from the TAIO example de-
picted in Figure 2.8, replacing the input (resp. output) actions by emissions
(resp. receptions) of symbols and signals.

Example 3.1.12: The previous example depicted in Figure 2.8 for TAIO
models is depicted with a IRTM in Figure 3.6. The bottom FSM has the
same behavior as its TAIO counterpart, i.e. plays ai when the corresponding
ei is received after a delay between 1.0 and 1.5 performance time. The FSM
on the top of the figure is an environment example, running in parallel (via
the and -transition from `0) and only allowing the sequence ν = e1! ·5.7 · e2!.
Assuming all the delays in the model of type dphy, a simulation will give the
path:
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〈0, 0, `0, ∅〉 −−−→and 〈0, 1, `11::`21, ∅〉 −−−→emit
〈0, 2, `12::`21, {e1}〉 −−−−−→suspend 〈0, 2, ˘`12::`21, {e1}〉 −−−→recv

〈0, 3, ˘`12::`22, {e1}〉 −−−−−→suspend 〈0, 3, ˘`12:: ˘`22, {e1}〉 −−−−−→delay∗1

〈1.3, 0, `12::`22, ∅〉 −−−−−→suspend 〈1.3, 1, ˘`12::`22, ∅〉 −−−→expir

〈1.3, 1, ˘`12::`23, ∅〉 −−−−−→suspend 〈1.3, 1, ˘`12:: ˘`23, ∅〉 −−−−−→suspend

〈1.3, 1, ˘`12:: ˘`23, ∅〉 −−−→send 〈1.3, 2, ˘`12::`24, {a1}〉 −−−−−→suspend

〈1.3, 2, ˘`12:: ˘`24, {a1}〉 −−−→delay 〈5.7, 0, `12::`24, ∅〉 −−−→expir
〈5.7, 1, `13::`24, ∅〉 −−−→emit 〈5.7, 2, `14::`24, {e2}〉 −−−→exit
〈5.7, 3, `24, {e2}〉 −−−→recv 〈5.7, 4, `25, {e2}〉 −−−−−→suspend
〈5.7, 5, ˘`25, {e2}〉 −−−−−→delay∗1 〈6.7, 0, `25, ∅〉 −−−→expir
〈6.7, 1, `26, ∅〉 −−−−−→suspend 〈6.7, 1, ˘`26, ∅〉 −−−→send
〈6.7, 2, `27, {a2}〉 −−−→exit 〈6.7, 3, [], {a2}〉

where a control point 〈γ, `, β〉 in Γ is depicted by its location ` and denoted
˘̀when suspended. Moreover, a control point is painted in:

red when it can apply one of the urgent moves (and), (exit) and (emit),

green if the time spent in its location is sufficient to move via an (expir),

blue if the elements of Θ allow to run with the move (recv),

pink if the next emit-transition sends an action (a ∈ Σext
out), i.e. can apply

the move (send) if suspended,

black otherwise.

Finally, ∗1 highlights the non-determinism due to the interval [1, 1.5] in wait-
transitions. The resolution (not detailed here) is done during the (delay)
moves, and returned first 1.3 seconds and then 1 second in the simulation.
Notice that a delay between them is performed to expire the deterministic
wait-transition with d = 5.7 and advances time for 4.4 seconds. The output
trace related to this run is: σref = 〈a1, 1.3〉 · 〈a2, 6.7〉. ♦

Example 3.1.13: Assuming now that all the delays in the model are in
performance time (of type dσin), the simulation will give a different output.
For the relative input trace σin = 〈e1, 0, 120〉·〈e2, 5.7, 60〉, the delays returned
are 0.65s (1.3 beat with 120 bpm), 2.2s (4.4 beats with 120bpm) and 1s (1
beat with 60bpm). It gives the output trace σref = 〈a1, 0.65〉 · 〈a2, 3.85〉,
following the input tempi. ♦

To terminate this section, we define a logical instant in a run of IRTM.
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Logical instant. A run π exposes the instantaneous sub-sequences of
moves executed during a logical instant.

Definition 3.5. Given a run π of length n, a logical instant πi of length k
is a sub-sequence si−1 −−→mi si . . . si+k−1 −−−−→mj+k

si+k with mj−1 = mj+k+1 =
(delay) or mj = m1 or mj+k = mn.

A logical instant is a subsequence πi of a run, it starts the run, terminates
the run or is between two (delay) moves. Moreover, the run π is a sequence
of l logical instants of the form: π = π1 −−−−→delay1

π2 . . . πl−1 −−−−−→delayl−1
πl where

πi is a logical instant sub-path.

3.2 Correspondence with Timed Automata

Given a IRTM as defined in Section 3.1.2, translations can be performed
in order to obtain equivalent existing models. In particular, under some
restrictions, a IRTM can be translated into an equivalent network of TIOLTSs
(as defined in Section 2.2.1). This translation is concretely performed in our
MBT framework to construct a network of TA in the Uppaal format and to
use the Uppaal tool suite [44, 56, 18] on these models.

• We define formally a translation from IRTM into a network of TIOLTSs
in Section 3.2.1.

• The translation contains several steps using alternative semantics for
IRTMs. The soundness of the procedure is proved in Section 3.2.2.

3.2.1 Translation into Timed Automata

We shall first present the restrictions and the logical trace equivalence ∼= we
consider in the translation. Then, we introduce two alternative semantics for
IRTMs, closer to the TIOLTS semantics. Finally, we consider the translation
rules and show the soundness of the whole procedure.

Hypotheses and equivalence. The conversion of IRTM into a network
of TIOLTSs works under restrictions for the IRTM. These restrictions are
required in order to limit IRTMs to what TIOLTSs can express.

(R1) Only one time unit is supported for the specification of delays.

(R2) There is no and -transition involved in a loop.
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The logical trace equivalence ∼= is defined for physical output traces of
the form 〈α, tphy〉. Two physical output traces σout and σ′out are logically
equivalent, written σout ∼= σ′out, if for each logical instant the output traces
contain the same sets of actions. Formally:

σout ∼= σ′out ⇐⇒ ∀ti. Σti
out(σout) = Σti

out(σ
′
out) (3.1)

with Σti
out(σ) = {aj | 〈aj , tj〉 ∈ σ∧tj = ti}. The equivalence is modulo logical

instant and does not care of the order of actions with the same timestamp.
This relation is extended to the sets of output traces as expected.

(R3) The output traces Tout of the IRTM are considered modulo permuta-
tions of actions with a same timestamp. The total ordering ≺ over Σin

and Σout is ignored during the comparison of output traces.

The purpose of the restriction R3 is to fill the gap between the semantics of
TIOLTS and the main IRTM semantics. Indeed, there is still a major differ-
ence not considered between IRTM and TIOLTS models: the communication
mechanisms. IRTM logically and asynchronously sends and receives items
using a store Θ (highly inspired from the Esterel signals environment [13]).
Contrary to CCS [71, 72] or broadcast in TIOLTS’s communications, that are
synchronous and without such a Θ-buffer.

Broadcast semantics of IRTM. The idea with the broadcast seman-
tics, is to mimic TIOLTS network behaviors by defining a IRTM semantics
using broadcast communication. Let us consider an alternative semantics
for IRTM, defined like the IRTM standard semantics of Section 3.1.2, except
for the following changes:

• The move (emit) is replaced by the following move (broadcast):

〈t, n,Γ :: 〈`, γ,>〉 :: Γ′,Θ〉 −−−−−−→
broadcast

〈t, n+ k, Γ̃ :: 〈`′, 0,⊥〉 :: Γ̃′, µ :: Θ〉
(broadcast)

if all elements of Γ are suspended and there exists ` −−→µ!
`′ ∈ ∆u with

µ ∈ Σsig
out. Moreover, there are k − 1 running locations with 〈`i, γi, βi〉

in Γ ∪ Γ′ such that there exists `i −−→µ?
`′i ∈ ∆s and (expir) cannot

be executed in `i. Then, each of them is replaced by 〈`′i, 0,⊥〉, giving
Γ̃ ∪ Γ̃′.

• The move (recv) is replaced by the following move (deadlock):

〈t, n,Γ :: 〈`, γ,>〉 :: Γ′,Θ〉 −−−−−−→
deadlock

〈t, n+ 1,Γ :: 〈`′, 0,⊥〉 :: Γ′,Θ〉
(deadlock)
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if none of (broadcast) or (expir) can be applied and there exists ` −−→µ?

`′ ∈ ∆s with µ ∈ Θ.

• The move (send) is replaced by the following move also called (send):

〈
t, n,Γ :: 〈`, γ,⊥〉 :: Γ′,Θ

〉
−−−→
send

〈t, n+ 1,Γ :: 〈`′, 0,⊥〉 :: Γ′, a :: Θ〉 (send)

if there exists ` −−→a!
`′ ∈ ∆u with a ∈ Σext

out.

• The move (suspend) is applied if none of (and), (exit) or (send) can be
applied.

A (broadcast) move is a synchronous communication by rendez-vous, similar
to the communications in the synchronized product of TIOLTS. Roughly,
it gathers one (emit) move with none, one or several (recv) moves of Sec-
tion 3.1.2. However, an important difference is that the control points
〈`, γ,>〉 enabling (emit) and (recv) must all be present in the current vector
Γ :: 〈`, γ,>〉 :: Γ′. At the opposite, in the semantics of Section 3.1.2, the
(recv) could occur later thanks to the use of the set Θ for storing all the
symbols or signals sent during one logical instant.

A (deadlock) move is the reception of a symbol or internal signal µ that
cannot be received in an earlier (broadcast) in the logical instant. Moves
(deadlock) result in reception transitions not fired in the TIOLTS model be-
cause the transition emitting the expected symbol has been already executed,
giving a deadlock in TIOLTSs. Intuitively, our goal in this semantics is to
avoid the (deadlock) as much as possible. For this purpose, in the alternative
semantics, we give to the (broadcast) move a lower priority than its (emit)
counterpart in Section 3.1.2 (using the suspend flag). This priority aims at
delaying the use of (broadcast) as much as possible and allows all the control
points to have the lead before executing a (broadcast) move. It results in
firing more recv -transitions when the (broadcast) move is executed because
other transitions until recv -transitions should be executed for all the control
points.

Finally, the new (send) move is the same as the (send) of Section 3.1.2,
except that it does not care about the order of symbols, and has priority over
(broadcast) because it does not require the control point to be suspended.

The move priorities of the alternative semantics are (and), (exit), (send),
(suspend), (broadcast), (expir), (deadlock) and (delay). Notice that emissions
have still a higher priority than delay expirations, in other words, (expir)
moves are applied on suspended control points which take precedence over
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receptions, preserving the move applicability order of the standard semantics
of Section 3.1.2.

The broadcast semantics of IRTM is the same as the alternative semantics,
without the (deadlock) move. We consider the same definition of runs as in
Section 3.1.2, and given a IRTM M, we denote by Lalt(M), respectively
Lbrd(M), the set of traces σref such that there exists a run π of M follow-
ing the alternative semantics, respectively broadcast semantics, and σref is
associated to π.

The alternative semantics is equivalent under the restriction R3 to the
IRTM semantics. Indeed, the (broadcast) move is a sequence of successive
(emit) and (recv) moves for the same signal or symbol. In other terms,
for all IRTM M, Lalt(M) = L(M). However, this does not hold for the
broadcast semantics and there exists some IRTM M such that Lalt(M) 6=
Lbrd(M). This inequality is seen for IRTMs executing the move (deadlock)
when simulated with the alternative semantics.

`0

`1

`′1

`2

`′2

`3

`′3

a! b?

b! a?

Figure 3.7: A IRTMM such that Lalt(M) 6= Lbrd(M).

Example 3.2.14: Figure 3.7 depicts an example of IRTM M such that
Lalt(M) 6= Lbrd(M). Indeed, when the two control points are in locations `1
and `′1, the IRTM can send a, with a (broadcast) move. Then, it can both
send b (in location `′1) and receive it (in location `2), again with a move
(broadcast). But thereafter, the IRTM is stuck in `′2. In order to capture
the already sent a, a move (deadlock) would be required, looking in the set
Θ of symbols already sent in the same logical instant. We depict the timed
sequences for each semantics hiding the (suspend) move executions:

ν = and · emit a · emit b · recv a · exit · recv b · exit
νalt = and · broadcast a · broadcast b · exit · deadlock a · exit
νbrd = and · broadcast a · broadcast b · exit
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♦

`0

`11 `12 `13 `14

`21 `22 `23 `24 `25 `26 `27

`22

e1! 5.7 e2!

e1? [1, 1.5] a1! e2? [1, 1.5] a2!

e2?
a1!

Figure 3.8: IRTM example: This model comes from the TAIO example de-
picted in Figure 2.9, replacing the input (resp. output) actions by emissions
(resp. receptions) of symbols and signals.

Example 3.2.15: Given the IRTM in Figure 3.8 simulated previously, the
timed sequence using the alternative semantics is:

νalt = and · broadcast e1 · delay 1.3 · expir · send a1 · delay 4.4 · expir ·
broadcast e2 · exit · delay 1 · expir · send a2 · exit

Because no (deadlock) move is applied for all σref ∈ Tout (since the possible
sequences are 〈a1, t1〉 · 〈a2, t2〉 with t1 ∈ [1, 1.5] and t2 ∈ [6.7, 7.2]) this IRTM
is translatable into an equivalent network of TIOLTSs. ♦

Translation of IRTM into TA. LetM be a IRTM satisfying the restric-
tions R1, R2 and R3. We show how to construct the corresponding network
of TIOLTSs M′ = 〈S, s0,A,Td,Tt〉 such that Lbrd(M) ⊆ LTA(M′) with
LTA(M′) the set of traces such that there exists a run π ofM′ following the
TIOLTS semantics of Section 2.2.1.

The network of TIOLTSs is constructed as the synchronized product of
several TIOLTSs, for which their related TAIO M′i = 〈Li, `0i ,Aτ ,Xi, Ii, Ei〉
are built from the IRTM. EachM′i is over a local single clock xi and over the
alphabet Aτ = Evt ∪ Act ∪ Sig , with τ ∈ Sig (the input/output symbols
and internal signals defined Page 36). The locations of theM′i are locations
of the IRTM M, plus some fresh locations added below. The transitions
and invariants of the M′i are built during a traversal of the IRTM M. We
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consider that the construction works on a current TAIO (one of the M′i’s),
and present below each step of the traversal:

(1) For an emit-transition ` −−→µ!
`′ ofM, we add to the current TAIOM′i

a transition ` −−−−−−−−−−→>, µ!, {xi:=0}
`′, with, as action, the emission of label

µ in the IRTM, without guard and with a reset of the local clock xi.
The source location ` is marked as urgent inM′i (i.e. ` ∈ Lu).

(2) We unfold the and -transitions of the IRTM into several transitions
of concurrent TAIOs. An and -transition ` −−−→and

`1‖`2 contains two
branches. For the branch ` → `1, we add to the currentM′i a transi-
tion of the form ` −−−−−−−−−−−−−→>, λi+1!, {xi := 0}

`1, where λi+1 is a fresh internal
signal of Aτ , used to trigger another TAIO and ` ∈ Lu. Then we con-
tinue the construction ofM′i starting with the location `1. When the
construction of M′i is terminated, we start with a new current TAIO
M′i+1 which contains initially a transition ` −−−−−−−−−−−−−→>, λi+1?, {xi := 0}

`2 (as-
sociated to the second branch `→ `2) and we continue the construction
ofM′i+1 starting with the location `2. Remark that the unfolding ter-
minates for all IRTM satisfying restriction R2.

(3) For a recv -transition ` −−→µ?
`′ ofM, we add to the current TAIOM′i a

transition ` −−−−−−−−−−→>, µ?, {xi:=0}
`′, with, as action, the reception of label µ

in the IRTM, without guard and with a reset of the local clock xi.

(4) For every wait-transition ` −−−→[d,d′]
`′ ofM, we add to the currentM′i a

transition ` −−−−−−−−−−−−−→xi ≥ d, τ, {xi := 0}
`′ in E , and an invariant I(`) = xi ≤ d′.

In this translation, d′ is set as the maximum bound of the local clock xi
in the invariant of its source location I(`). This prevents the automaton
from staying on the location more than d′ mtu. d is set to the minimum
bound of xi into the guards of the transition prohibiting to execute it
before d mtu. Notice that when d = d′ this combination forces the wait
for strictly d mtu.

Example 3.2.16: Figure 3.9 depicts the network of TIOLTSsM′ obtained
by translation of the IRTM M in Figure 3.8. This TIOLTS network is not
deterministic and L(M) ⊆ LTA(M′). Indeed, the TIOLTS can send a1 be-
tween 1 and 1.5 mtu and a2 between 5.7 and 7.2 mtu. The IRTM has the
same possibilities. ♦
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`0 `11 `12

x1 ≤ 5.7

`13 `14

`20 `21 `22

x2 ≤ 1.5

`23 `24 `25

x2 ≤ 1.5

`26 `27

`22

λ1! e1! x1 ≥ 5.7 e2!

λ1? e1? x2 ≥ 1 a1! e2? x2 ≥ 1 a2!

e2?

a1!

Figure 3.9: TIOLTS network example: Translated from the IRTM example
depicted in Figure 2.9. Gray locations are urgent and when omitted, the
guard is true (>) and the action is the internal action τ . The constructed
TAIOs are real-time TAIOs and reset their local clock xi in every transition.
Therefore, for all transitions and for i ∈ {1, 2}, U = {xi}.

3.2.2 Soundness of the Translation

Altogether, for a IRTM M and its TIOLTS translation M′, the wanted
property is that L(M) ∼= LTA(M′) holds when M satisfies R1, R2 and R3.
We saw that Lalt(M) ∼= Lbrd(M) if the modelM does not execute (deadlock)
moves. We need to show L(M) ∼= Lalt(M) and Lbrd(M) ⊆ LTA(M′).

Proposition 1. L(M) ∼= Lalt(M). The idea is based on the same move
dependencies in both the alternative and the standard semantics of IRTM.
Indeed, for a logical instant t, if a transition is possible for a semantics and
fired via a move, the other semantics fires the same transition during the
same logical instant t. In particular, for every logical instant πi = si−1 −−→mi
si . . . si+k−1 −−−−→mj+k

si+k the moves (send) and (sendalt) will output the same
set of actions aj ∈ Act producing the same set of pairs 〈aj , ti〉 in the related
output traces σref .

We construct the proposition, in a logical instant and not consider (delay)
moves. Moreover, the proposition is presented by recurrence on the possible
moves allowed by the standard or alternative semantics, denoted mi and
mialt respectively.

The base case holds since we start with the same IRTM M in state
s0 = 〈0, 0, 〈〈`0, 0,⊥〉〉, 0, ∅〉.

• ∀σ ∈ L(M),∃σ′ ∈ Lalt(M), σ ∼= σ′.
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Assuming the model in a state si = 〈t, n,Γ :: 〈`cp, γcp, βcp〉 :: Γ′, cp,Θ〉:

– (and) or (exit) moves are possible. Then, `cp −−−→and
`1‖`2 ∈ ∆u

or `cp has no outgoing transition and (andalt) or (exitalt) can be
applied too.

– (emit) is possible, then `cp −−→µ!
`′cp ∈ ∆u with µ ∈ Σsig

out. Moreover:

1. (andalt) is not applicable to `cp because an and -transition can-
not be in a branch,

2. (exitalt) cannot be executed because `cp has at least one out-
going transition to `′cp,

3. (sendalt) is not applicable to `cp because an action emission
cannot be in a branch.

Hence, the move (broadcastalt) can be executed on `cp, when all
the control points are suspended. It results in firing the emit-
transition in the similar fashion than the standard semantics.
Remark that we suppose any nondeterminism solved, therefore,
another emit-transition outgoing from `cp cannot be executed.

– (expir) is possible, then (emit) is not applicable and `cp −−−→[d,d′]

`cp′ ∈ ∆s such that Φ(d) ≤ γcp ≤ Φ(d′). From the previous
reasons (1), (2) and (3), it implies that (andalt), (exitalt), and
(sendalt) cannot be executed on `cp. Moreover:

4. (broadcastalt) is not possible on `cp because (emit) is not ap-
plicable.

Hence, the move (expiralt) will be executed on `cp, when all the
control points are suspended. It results in firing the wait-transition
in the similar fashion than the standard semantics. Remark that
no (expiralt) can be skipped by a (broadcastalt) reception because
the reception is prohibited if an expiration is possible from the
same source location.

– (recv) is possible, then none of the moves (emit) or (expir) can be
applied to `cp and `cp −−→µ?

`′cp ∈ ∆s such that µ is minimal (wrt ≺)
in Θ ∩ {µ′ | ∃`cp −−→µ

′?
`′′cp ∈ ∆s}. From the previous reasons (1),

(2), (3) and (4), it implies that none of (andalt), (exitalt), (sendalt)
and (broadcastalt) can be executed on `cp. Moreover:

5. (expiralt) is not possible on `cp because (expir) is not applica-
ble.
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Hence, the recv -transition `cp −−→µ?
`′cp will be fired on `cp with a

future (broadcastalt) reception if µ 6∈ Θ, and with a (deadlockalt)
move otherwise.

– Before ending a logical instant, (suspend) and (suspendalt) must
be executed similarly for all the control points in Γ.

– (send) is possible, then all elements of Γ are suspended and `cp −−→a!

`′cp ∈ ∆u with a ∈ Σext
out and a is the smallest symbol of Σext

out emit-
ted by a location of Γ. From the previous reasons (1) and (2), it
implies that (andalt) and (exitalt) are not applicable to `cp. Hence,
(sendalt) is executed and the emit-transition is fired similarly than
in the standard semantics.

Finally, no move can be executed in the standard semantics except
(delay). The equivalent moves are executed in the alternative se-
mantics, in particular, all the (sendalt) moves related to the (send).
These emit-transition executions result in two sets for all timestamps
t: Σt

out(σ) and Σt
out(σ

′), such that Σt
out(σ) = Σt

out(σ
′) for σ ∈ L(M)

and σ′ ∈ Lalt(M).

• ∀σ ∈ Lalt(M),∃σ′ ∈ L(M), σ ∼= σ′.
Assuming the model in a state si = 〈t, n,Γ :: 〈`cp, γcp, βcp〉 :: Γ′, cp,Θ〉:

– (andalt) or (exitalt) moves are possible. Then, `cp −−−→and
`1‖`2 ∈ ∆u

or `cp has no outgoing transition and (and) or (exit) can be applied
too.

– (sendalt) is possible, then `cp −−→a!
`′cp ∈ ∆u with a ∈ Σext

out. From
the previous reason (3), it implies that no other move is possi-
ble in `cp except (suspend). Hence, (send) is executed, when all
the control points are suspended, and the emit-transition is fired
similarly than in the alternative semantics.

– Before ending a logical instant, (suspendalt) and (suspend) must
be executed similarly for all the control points in Γ.

– (broadcastalt) is possible, then all elements of Γ are suspended and
`cp −−→µ!

`′cp ∈ ∆u with µ ∈ Σsig
out. There are k−1 running locations

〈`j , γj , βj〉 in Γ ∪ Γ′ such that there exists `j −−→µ?
`′j ∈ ∆s and

(expir) cannot be executed in `j . Then, each of them is replaced
by 〈`′j , 0,⊥〉, giving Γ̃∪ Γ̃′. From the previous reasons (1) and (2),
it implies that (and) and (exit) are not applicable to `cp. Hence,
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the move (emit) can be executed on `cp and can fire the emit-
transition in a similar fashion than the alternative semantics. In
particular, the execution adds to Θ the symbol µ, enabling the
k − 1 (recv) moves.

– (expiralt) is possible, then (broadcastalt) is not applicable and `cp −−−→[d,d′]

`′cp ∈ ∆s such that Φ(d) ≤ γcp ≤ Φ(d′). From the previous reasons
(1) and (2), it implies that (and) and (exit) are not applicable to
`cp. Moreover, similarly to reason (4), (emit) is not applicable to
`cp because (broadcastalt) is not possible. Hence, the move (expir)
can be executed on `cp and can fire the wait-transition.

– (deadlockalt) is possible, then none of (broadcastalt) or (expiralt)
can be executed and `cp −−→µ?

`′cp ∈ ∆s with µ ∈ Θ. From the
previous reasons (1) and (2), it implies that (and) and (exit) are
not applicable to `cp. Moreover, similarly to reasons (3) and (4),
(emit) and (expir) are not applicable to `cp because (broadcastalt)
and (expiralt) are not possible. Hence, (recv) can be executed on
`cp and can fire the recv -transition.

Finally, no move can be executed in the alternative semantics except
(delayalt). The equivalent moves are executed in the standard seman-
tics, in particular, all the (send) moves related to (sendalt). These emit-
transition executions result in two sets for all timestamps t: Σt

out(σ
′)

and Σt
out(σ), such that Σt

out(σ
′) = Σt

out(σ) for σ ∈ L(M) and σ′ ∈
Lalt(M).

Proposition 2. Lbrd(M) ⊆ LTA(M′). The idea is to show via a simu-
lation that the behaviors of any IRTMs simulated with the broadcast se-
mantic can be simulated by its translated network of TIOLTSs. Given a
relation R, a simulation defines the fact that one model can express what
another expresses. Formally, M ∼ M′ if ∃ R ⊆ IRTM × TIOLTS such
that 〈s01, s02〉 ∈ R and ∀〈s1, s2〉 ∈ R and ν ∈ Lbrd(M) if s1 −→ν s′1, then
∃s2, s2 −−→ν

′
s′2 such that ν ′ ∈ LTA(M′), and 〈s′1, s′2〉 ∈ R. The relation R is

defined as follows:

• s01 = 〈0, 0, 〈〈`0, 0,⊥〉〉, 0, ∅〉 for the IRTMM= 〈Evt ∪ Sig ,Act ,L, `0,∆〉
and s02 = s0 for the TIOLTSM′ = 〈S, s0,A,Td,Tt〉 with 〈s01, s02〉 ∈
R.

• For the state 〈s1, s2〉, with s1 = 〈t, n,Γ :: 〈`cp, γcp, βcp〉 :: Γ′, cp,Θ〉, if:
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– s1 −−−→and s′1, then `cp −−−→
and

`1‖`2 ∈ ∆u and:

s′1 = 〈t, n+ 1,Γ::〈`1, 0,⊥〉::Γ′::〈`2, 0,⊥〉,Θ〉

By translation (step 2), it exists a related transition in the TAIOs
of M′ such that `i −−−−−−−−−−−−−→>, λi+1!, {xi := 0}

`i′ and the created transi-
tion `j −−−−−−−−−−−−−→>, λi+1?, {xi := 0}

`j′ . Hence,M′ can execute the transi-
tion s2 −−−→λi+1 s′2, and 〈s′1, s′2〉 ∈ R.

– s1 −−−→exit s′1, then `cp is an exit-location (has no outgoing transi-
tion). No transition is added in exit-locations during translation
so for the corresponding TAIO location `i of s2, it holds that
∀µ ∈ Aτ , `i 6−→µ , moreover, 〈s′1, s2〉 ∈ R.

– s1 −−−→send s′1, then `cp −−→
a!

`′ ∈ ∆s with a ∈ Σext
out. By translation of

emit-transitions (step 1) and assuming that the TAIOMenv ∈M′,
which models the test environment, is input-enable (i.e. accepts
all the possible outputs at every location in order to prevent from
blocking the specification Msys). It exists in s2 a corresponding
transition `i −−−−−−−−−−−→>, a!, {xi := 0}

`i′ with a ∈ AO such that M′ can
execute the transition s2 −→a s′2 and 〈s′1, s′2〉 ∈ R.

– s1 −−−−−→suspend s′1, then none of (and), (exit) and (emit) can be ex-
ecuted and there exists at least one element in Γ which is not
suspended. This transition explicits the scheduling of IRTM con-
trol points, it is considered as non-deterministic in a network of
TIOLTSs. Indeed, any TIOLTS states in s2 can fire a transition
if its guard holds. As a consequence, a network of TIOLTSs is
more permissive than its related IRTM, and Lbrd(M) ⊆ LTA(M′).
Moreover, 〈s′1, s2〉 ∈ R.

– s1 −−−−−−→broadcast s′1, then all elements of Γ are suspended and `cp −−→µ!

`′cp ∈ ∆u with µ ∈ Σsig
out, there are k−1 running locations 〈`j , γj , βj〉

in Γ∪Γ′ such that there exists `j −−→µ?
`′j ∈ ∆s and (expir) cannot

be applied to `j then each of them is replaced by 〈`′j , 0,⊥〉, giving
Γ̃ ∪ Γ̃′. By translation (step 1 and 3), there are:

∗ one related transition `i −−−−−−−−−−−→>, µ!, {xi := 0}
`i′ and

∗ k − 1 related transition(s) `j −−−−−−−−−−−→>, µ?, {xi := 0}
`j′

in s2 such that M′ can execute the transition s2 −→µ s′2 and
〈s′1, s′2〉 ∈ R.
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– s1 −−−→expir s′1, then (broadcast) is not applicable and `cp −−−−→[d,d′]
`′cp ∈

∆s such that Φ(dΦ) ≤ γcp ≤ Φ(d′). By translation (step 4), we
have three points:

∗ the related automaton TAIOi is on the state 〈`i, {γ′cp}〉 ∈ s2,
∗ the related location has an invariant on xi: I(`i) = xi ≤ d′

and
∗ the related transition has the form of: `i −−−−−−−−−−−−−→xi ≥ d, τ, {xi := 0}

`i′ .

such that v(xi) = γ′cp. The value of γ′cp is the duration in mtu
stayed in `i by the control point, because the TIOLTSM′ resets
its local clock in every transition. Indeed, γ′cp = Φ(γcp)

−1 with
the relative time Φ, hence, since d ≤ γ′cp ≤ d′,M′ can execute the
transition s2 −→τ s′2 and 〈s′1, s′2〉 ∈ R. Remark that when a recep-
tion and an expiration hold in a branch, the TIOLTS can choose
both of them contrary to IRTM which forces the expiration. This
fact implies Lbrd(M) ⊆ LTA(M′).

– s1 −−−→delay s′1, then no other move can be executed, {〈`, γphy +

δphy,⊥〉 | 〈`, γphy, β〉 ∈ Γ}, and δphy is a physical time duration
such that

a) δ > 0,

b) for all 〈`, γ, β〉 in Γ such that there exists ` −−−→[d,d′]
`′ ∈ ∆s, it

holds that γ + δ ≤ Φ(d′) and

c) there exists at least one 〈`, γ, β〉 in Γ such that ` −−−→[d,d′]
`′ ∈

∆s and Φ(d) ≤ γ + δ.

By translation (step 4), all the upper bounds d′ are in source-
location’s invariants and all the lower bounds d are in guards. A
network of TIOLTSs advances time only in mtu, rather than a
IRTM that manipulates physical time. However, restriction R1
relates the mtu to the single relative time Φ in IRTM such that
δΦ = Φ(δ)−1. Therefore, b) assures that Φ(γ+ δ) ≤ d′ and for all
0 ≤ δ′ ≤ δΦ, v + δ′ |= I(`), v being the valuation of each clocks
xi equal to Φ(γ)−1. Hence, M′ can execute the move s2 −→δ s′2
and 〈s′1, s′2〉 ∈ R.

The relation R shows that a TIOLTS can simulate a IRTM. However, the
translated TIOLTS is more expressive and so a bi-simulation is impossible,
i.e. a IRTM cannot simulate a TIOLTS via this translation.
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Figure 3.10: Model expressivity: network of TIOLTSs in Figure 3.9 with 1.3
mtu rather than 5.7 mtu.

Example 3.2.17: Figure 3.10 depicts the network of TIOLTSsM′ obtained
with a wait for 1.3 mtu in the top wait-transition. The example shows that
non-bi-simulation is dangerous because L(M) ⊆ LTA(M′). Indeed, we can
express three different kinds of run:

1) a1 is sent when x2 ∈ [1, 1.3[ mtu, then the broadcast with e2 works and
a2 is sent after [1, 1.5] mtu,

2) a1 is sent at x2 = 1.3 mtu, then: (a) if the top TAIO executes the
emission of e2 first, the broadcast fails and a2 is not sent; Otherwise,
(b) the same behavior as 1) is seen and a2 is sent after [1, 1.5] mtu.

3) a1 is sent when x2 ∈ ]1.3, 1.5[ mtu, e2 is already sent, therefore, a2 is
not sent because e2 cannot be received.

A IRTM expresses the first and the second case (a) when a2 is not sent.
However, the second case (b) is impossible with IRTMs because the schedul-
ing executes first the top control point in `13. The third case is possible if
the expiration of the top control point does not expire the second. ♦

In conclusion, from a restricted IRTM, the translation constructs a net-
work of TIOLTSs. Due to the nondeterminism we can see in networks of
TIOLTSs, the model resulted from translation can express more than its
IRTM counterpart. The translation provides a model with more possible
paths, implying a generation of more test cases to make an exhaustive suite.
However, the exhaustive suite of test cases, covers the test cases generated
from the restricted IRTMs.
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The restrictions are on the communications, the time units and the al-
ternation managed in IRTMs. More precisely, in order to obtain a commu-
nication equivalence between TIOLTSs and IRTMs, (deadlock) moves should
not be executed in the set of possible output traces of the IRTM. IRTM
delays are restricted to a single time unit to match TIOLTSs model time
unit. In particular, a TIOLTS duration d must be a IRTM duration d′ after
evaluation with d′ = Φ(d). It implies that any shifts of delay performed in a
TIOLTS model must consider this tempo curve. Finally, we lost the dynamic
concurrence of IRTMs by unfolding and -transitions.

However, the TIOLTSs is a good representation of its IRTM counterpart.
It allows the integration of efficient and useful frameworks of test in our MBT
framework. Moreover, the construction of the TIOLTS model is performed
automatically from the IRTM.

3.3 The Real-Time Virtual Machine

IRTMs are defined in order to specify real-time music systems. They can
be translated into a network of TIOLTSs to be used by existing MBT tools
for generating tests. However, the translation induces several restrictions
which may be impossible for some IRTMs. In order to get the full benefit of
IRTMs, we present the Virtual Machine (VM) implemented to execute such
models. A IRTM execution permits to simulate models without restrictions
and thus eases and improves the generation of relevant tests for the IUT.
The VM allowed us to implement an online approach in our test framework
which can generate a suite of test cases on-the-fly during IRTM simulation.
This is a good way to implement efficient algorithms for generating relevant
input traces.

Architecture

The VM is composed of four components: its core module, input and output
managers and time module. Depicted in Figure 3.11, the VM first requires
a IRTM given as input (dashed arrow). Then, the core module executes the
model using the other components according to the current executed move
or when specific transitions are reached by a control point. We depicted in
the figure:

• step, to abstract every move of the standard semantics,

• d?, to represent activations of wait-transitions (i.e. when a wait-
transition is reached by a control point),
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Core
Input

managerTester

Model

Output
manager
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step?

d or e

delayd?
expir

Figure 3.11: VM architecture scheme: given a IRTM as input, the VM
simulates the model following the standard semantics.

• ?, to abstract a nondeterministic request,

• d or e, to represent the solution of a nondeterministic request, and
finally,

• expir or delay, to depict the corresponding moves.

Core Module Description. The core module of the VM contains the
current state si = 〈ti, ni, Γi, Θi〉 of the simulation. cp is implicitly the cur-
rent control point executing in the list Γi. This module applies the possible
semantics moves for each control point in Γi until their suspension. When
a wait-transition is reached, delaying the execution by a certain amount of
time, a query d? is sent to the time module in charge of waking up the tran-
sition when the time has elapsed (resulting in an (expir) move application).
When the logical instant is terminated (no more control point can applied a
move), a (delay) move informs the time module that time can be advanced.
The time module is in charge of computing the shortest δ corresponding to
the minimum delay according to the pending wait-transitions.

In Γ, the control points are managed according to their types: concretely
they are stored into the lists Γrecv and Γsend. The former stores the control
points suspended on a recv -transition, and the latter is a priority list sorting
the control points in a source of a send -transition according to the output
symbols order. Indeed, a control point is stored only when an event is waited
or an action must be sent. The other transitions being wait-transitions
(stored in the time module) or urgent transitions (directly fired), they do
not need a specific storage.
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Finally, when a nondeterministic location or transition is reached, the
core asks the input manager to obtain a value. The solution returned is:

• i) an event e, chosen between the set of possible emit-transitions,

• ii) a delay d, picked in the bounds of one or several wait-transitions.

The core can then behave deterministically according to the solution, omit-
ting the other possibilities.

Time module. The time module schedules time count downs enabled in
the model, i.e. the wait-duration d retrieved from the time spent on the
location. The time count downs are related to the field γ of control points.
These counters are initialized each time a control point has an outgoing
wait-transition with the value of its delay d (eventually after the resolution
of nondeterminism).

dphy
1 | . . . |d

phy
n

...

dσin1 | . . . |dσinm

δphy
1 | . . . |δ

phy
k

δi = Φi(di1)

Figure 3.12: Time scheduler scheme.

The counters are sorted according to their types Φ as depicted in Fig-
ure 3.12 for k time units. On the left, k − 1 lists store the enabled count
downs for each relative time and one store for physical time. The lists order
the earlier duration first and the other relatively. Hence, for the list Φ, a
count down dΦ

i has the value of: Σj=1
i dΦ

j . Similarly, a delay dΦ is inserted in
the list Φ with the following algorithm:

def insert_timer(l, d, i):
if(d < l.index(i)):

l.insert(i, d)
l.index(i+1) = l.index(i+1) - d

else:
insert_timer(l, d - l.index(i), i+1)
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for l a list of count downs of time unit Φ, d the delay to insert of type Φ and
i the index.

On the right, a list of delays in physical time is ordered by the k first
count downs, allowing to easily compute the shortest delay δ = δphy

1 , among
all the different time units. In order to sort the different type of delays,
we need to apply the evaluation function Φ to the first duration of each
list. It permits to manage exclusively physical time. This conversion only
needs to be checked every time the move (delay) is executed, since time
cannot advance via another move. Notice that the inverse of the evaluation
function Φ−1 is applied to δphy in order to retrieve the relative amount of time
from the first delay of each list. More precisely, the operation lΦ.index(1) =
lΦ.index(1) - Φ−1(δphy) is computed for each list lΦ, waking up the related
wait-transitions when 0 is reached, (negative values are impossible since δphy

is the shortest delay).

Input-Output managers. The input manager deals with the strategies
which emit a sequence of inputs. These emissions depend on the freedom
allowed by the modelMenv for performing an input trace. These strategies
are executed when a choice is possible and have the responsibility to solve
nondeterminism. Different strategies are possible and use “on-the-fly” gener-
ation algorithms based on the modelM and possibly some observations. An
example of such strategies is implemented and presented in the generation
phase in Section 4.3. In short, this strategy returns a random event when
several are possible and chooses one of the pending delays δphy

i (not necessary
the first δphy

1 ) to return δ when the move (delay) is executed.

The outputs are managed differently since they are independent observers
monitoring a precise model aspect. In other words, the output-manager
is a class monitoring all the model moves (the steps in Figure 3.11) and
signaling their application to an observer interface. Thanks to this feature,
the observers can choose independently their monitored moves for computing
their observations. We implemented three observers:

• the observers tracing the corresponding output trace σref or the re-
lated input trace σin of a simulation, catching the send and emit move
applications respectively,

• an observer counting the coverage in number of locations of one or
several simulations, storing in a set the source locations of every move
application,
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• and a detailed step printers, mainly used for debugging, which prints
the VM internal values.

Summary

This chapter dealt with the formal definition of our ad hoc model to specify
event- and time- triggered systems. These models, called Interactive Real-
Time Models (IRTM), allow a deterministic timed specification of real-time
systems. Their first goal is to be a clear specification of reactive parts of
IMSs.

We defined the syntax and the standard semantics of IRTMs allowing
such a specification. Then, we presented a translation procedure in order
to construct a network of TIOLTSs, behaving as IRTMs. Thereafter, the
soundness of the translation is proved, pointing the fact that TIOLTS can
express more than IRTMs. The translation is implemented in our frame-
work to use existing MBT frameworks, but is performed under restrictions
on IRTMs. We finally presented a VM, implemented in order to consider
IRTMs as byte-codes and execute them to return the expected output trace
σref according to an input trace σin. The VM allows to generate and simu-
late without restriction on IRTMs and opens a promising alternative to the
translation for testing IMS. First experiments are reported in Section 5.3
with encouraging results.



Chapter 4
Real-Time Model-Based Testing
Framework

Now that we have defined a formal model to capture precisely time behav-
iors of systems, we can present our Timed Model-Based Testing (TMBT)
framework. TMBT is based on IRTMs, defined in Chapter 3, and testing
theory, presented in Section 2.3. Our framework allows to automatically and
formally test real-timed systems given an Implementation Under Test (IUT),
its timed requirements and user parameters in inputs.

The goal of this procedure is to check time conformance of real-time
systems according to a model M built from timed requirements. For our
framework, an error is a system output not allowed or absent in the model,
therefore, we ensure with our tests the system outcomes and when they are
sent. If a system conforms its model, resulting in a verdict pass, the system’s
timed reliability should be guaranteed.

This framework avoids the burden of manual construction of models, a
disadvantage in usual model-based testing and verification techniques. In-
deed, the developed framework proposes an automatic construction based
on the high-level timed requirements in input. With such requirements, a
MBT procedure is run, checking the Relativized Time Input/Output Con-
formance (rtioco) [44] between the model and the system outputs. In case
of testing score-based IMS, high-level timed requirements are naturally pro-
vided by the mixed score needed in such systems and defining the output
actions according to the input events of the system.

67



68 CHAPTER 4. REAL-TIME MBT FRAMEWORK

We present in the following of the section, our TMBT procedure step
by step (Section 4.1) in order to describe completely the framework and its
possibilities. Then, we describe in Section 4.2 the construction phase, which
defines inference rules to make models compositionally. The relevance of the
input traces generated for the test is crucial, we investigate this point in
Section 4.3 and expose the importance of considering a test environment in
models.

4.1 Automatic Model-Based Testing Workflow

We depict in Figure 4.1 TMBT workflow. The workflow requires in input an
Abstract Syntax Tree (AST) built from high-level timed requirements. In the
framework, we consider an abstract syntax used by our construction rules
for traversing recursively an AST in such a syntax. These rules automati-
cally build the IRTM corresponding to the AST in input. Then, the TMBT
workflow, following the MBT approach described in Section 2.3, generates a
set of input traces Tin in order to compute for all the input traces σin ∈ Tin
the corresponding reference traces σref from the model and monitored traces
σmoni from the IUT. These traces are computed during the simulation and
the execution steps respectively. Finally, a comparison between the reference
and the monitored outputs is done resulting in a verdict. This verdict ex-
poses actions per logical instants and reports either the IUT passed or failed
the current test suite with the value pass or fail respectively.

Requirement Construction Generation

Simulation

Execution

ComparisonAST IRTM σin

σ
ref

σm
on
i

Figure 4.1: Workflow of timed model-based testing framework.

For each step, the procedure permits several configurations and allows
the user to control: the test environment Menv, the targeted part of IUT
or the test tolerance between the reference and monitored timestamps. The
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steps of TMBT workflow are independently configurable, however, there is a
global meaning to the reunion of step-configurations. For instance, in order
to check the IUT conformance, an exhaustive generation, executed on the
whole system must be performed by the framework.

4.1.1 Requirements

The document containing high-level timed requirements is the key point for
test frameworks and specifies the system features and constraints. In our
approach, requirements are considered as a user-friendly document that can
be a program, a timed scenario or a list of actions occurring on event detec-
tions. In order to generalize these inputs, we directly start from the parsed
representation of such a document, a AST following an abstract syntax. The
goal is to reduce the cost of model constructions computing a model directly
from a list of timed requirements.

requirement ::= ε | event requirement
event ::= evt(e, duration, sequence) e ∈ Evt
sequence ::= ε | action sequence
action ::= act(duration, sequence) | act(duration, a) a ∈ Act
duration ::= d timeUnit d ∈ R+

∗
timeUnit ::= s | t1

Figure 4.2: Example of grammar followed by ASTs in input.

Example 4.1.18: For our example, we define the grammar followed by the
ASTs depicted in Figure 4.2. This grammar is over two alphabets: Evt and
Act . These alphabets define the event and action symbols in the system, i.e.
the IUT inputs and outputs respectively. We consider in this grammar event-
or time-triggered actions, and manage two time units. A duration can be in
a relative time defined by the tempo curve Φ1 and denoted t1 or in physical
time, denoted s.

We denote d, a duration in physical time phy or relative to Φ1, written
d s or d t1 respectively in the grammar, where d is a duration. The AST
given in input must be a sequence of events evt(e, d, as) where e ∈ Evt , d
is the event duration and as is the triggered sequence of actions. An action
act(d, as) is composed of d a delay, and: as a sub-sequence of actions to
trigger or, a ∈ Act an atomic action to send. The action delay is the amount
of time to wait for until the action activation.

Figure 4.3 depicts a toy example of a textual timed-requirement. Events
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are defined with their duration and their related timed reactions (denoted
with ->). In this timed requirement, the detection of events e1 and e2, must
respectively trigger the sequence of actions as1 and as2. The first sequence
as1 timely triggers a1 after 1 second, the second sequence as2 triggers another
actions as3 0.5 t1 after the detection of e2. Then, 0.5 second after this
action launch send action a2. Once again it is an example and the high-level
specification is not handled in this work.

♦

e1 1s -> as1

as1 -> 1s a1

e2 1s -> as2

as2 -> 0.5t1 as3 0.5s a2

as3 -> 1s a3

Figure 4.3: Example of timed requirement.

Usually, MBT techniques are based on such high-level requirements, used
by expert for constructing manually IUT models [88]. Hence, needing such
high-level requirements in the input of our framework does not add more
work than standard methods and assures a coherence in the test procedures,
avoiding misunderstanding and reducing errors in the model. These require-
ments can then be checked thanks to the graphical representation of models.
The intuition here is that writing only once such specification to build the
model automatically will ease and reduce errors in testing procedures.

4.1.2 Model Construction

The construction is based on a set of rules parsing the AST. During this step,
sub-components of model are created and merged together sequentially or in
parallel to build the modelM. This modular approach specifies the system
reactions for each events/actions and eases the model specification. This
approach enjoys the (re)-usability of rules and encourages the scalability.
The construction step, depicted in Figure 4.4, builds a IRTMM composed
of two sub-models: the IUT specificationMsys and the model of its test envi-
ronmentMenv. The second model sets the bounds of tests that is convenient
to delimit test sessions. Indeed, if the test bounds are too large they may
lead to an impossible generation of input sequences, but if the test bounds
are too restricted they may miss important input sequences not considered
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Construction

paramMenv

IRTMAST

Figure 4.4: TMBT framework - construction step. Given a AST and param-
eters, a IRTM is constructed specifying the system according to its require-
ments.

in the tests. The framework requires parameters to construct the wanted
kind of environment and allows the user to fix relevant bounds for testing.

More details in the construction rules are presented in Section 4.2. The
presentation includes a complete description of the construction rules via
toy-examples specifying a system with three different approaches.

4.1.3 Generation of Input Test Data

Given a IRTM M, the generation phase is in charge of producing a suite
of input traces Tin. As defined in rtiocoe (Equation 2.1), this set has to be
exhaustive inM.

However in practice, exhaustive and even relevant Tin are difficult or im-
possible to generate. Indeed, there often is an infinity of possibilities. We
implemented several algorithms generating relevant suite of input traces Tin,
presented later in Section 4.3. Moreover, another difference with testing the-
ory in Section 2.3, is the concrete stimulation of the IUT by our framework.
Testing theory, abstracts the implementation with models to formally define
system conformance using test cases as TIOLTS. Here, we manage input and
output traces and consider a test case as a pair of traces 〈σin, σref〉, separat-
ing the input and output sequences. From such a pair, every output trace
observed from a system stimulated with σin that diverges from the reference
σref leads to a fail terminal state.

IRTM

Requirement

Generation σin

Figure 4.5: TMBT framework - generation step. It generates the set of input
traces Tin according to criteria andMenv bounds.
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As depicted in Figure 4.5, generation may need more information than just
the specification. Indeed, high-level requirements or another representation
can be more relevant to generate a suite of test. The different generation
algorithms are related to the kind of tests the user want to execute, which
can cover more or less the modelM. The notion of coverage is important to
valuate a test suite and its suite of inputs. Generally, a coverage criterion is
a reachability problem and must pass by a set of model items: - locations,
transitions or paths -, during the simulation of the input trace set Tin. Here,
the quality of a test is defined by the coverage of its test case suite.

4.1.4 Simulation for Generation of Reference Output

Giving one or a set of input traces, the simulation step computes the reference
traces σref gathering the expected outputs of each the related input trace σin.
Simulating a model following an input trace σin and observing the outputs,
results in computing the test case 〈σin, σref〉.

σin Simulation σref

Figure 4.6: TMBT framework - simulation step. The expected outputs traces
σref are computed by simulating the model with the related input traces σin.

Figure 4.6 depicts the simulation step. The reference traces σref resulted from
simulations are physical output traces. The model is required as a finite and
non-blocking model for assuring the termination of the simulation.

Our framework simulates two kinds of model:

• Networks of TIOLTSs, in the format of Uppaal, constructed from re-
stricted IRTMs according to the translation presented in Section 3.2.
The framework uses the executable CoVer or Verifyta, to run the Uppaal
model checker on the model.

• IRTMs, using the VM described in Section 3.3.

In both cases, given σin, we first generate a deterministic IRTMMσin mod-
eling an environment which will strictly follow the input trace. A simulation
is then performed by traversingMσin orM′σin which will send event symbols
to the rest of the model Msys or M′sys. Uppaal and the VM, offer options
to trace the result in a physical trace σref in our format of output traces
〈a, tphy〉.
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Notice that to translate from Uppaal mtu into physical time, we apply to
the durations in σref (resulting from Uppaal simulations) the tempo curve Φ
from the relative time unit of the restriction R1 in Section 3.2.

4.1.5 Test Execution

The goal of the execution step is to stimulate and observe the IUT and
return the monitored output trace σmoni, which is the system reactions from
σin. Stimulations and observations are done via an adaptor which defines
black-box bounds, i.e. the system modules under test. Usually, rather than
the entire system, it can be more efficient to restrict the tests only to one or
several sub-components of the IUT. For instance, in a IMS testing case, we
may want to test only the discrete module of the system.

Indeed, translating the abstract inputs of σin into concrete ones might be
error prone and difficult. Moreover, the reference output trace σref might not
match the system output anymore. It is due to the impact of the input trace
translation, from discrete into concrete inputs, or the system recognition
mechanism that blur the input trace σin. For instance, a score following
algorithm [35] usually estimates the tempi of the audio waves during its
recognition step. This procedure blurs the tempi in the input trace σin
and alters the system outputs which are not conformed to the related σref
anymore.

To avoid such problems, the external adaptor which is the interface be-
tween the IUT and the model, can directly exchange abstract data with the
IUT. It requires two abstract input/output functions to the IUT. In addition
to the ease of the tests implementation, these functions allow to compare the
system behaviors according to abstract or concrete inputs.

σin

Adaptor

IUT σmoni

event

time

action

Figure 4.7: TMBT framework - execution step. Adaptors stimulate σin on the
IUT. The observed outputs form the monitored trace σmoni. If a virtual clock
is implemented in the IUT, time can be fast-forwarded to highly accelerate
the IUT execution.
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During execution, the input trace σin is stimulated on the IUT. The monitored
traces σmoni are physical output traces produced by the adaptor. As depicted
in Figure 4.7, the adaptor has a main role during execution and is designed
to modify as little as possible the IUT. If the IUT implements a virtual clock,
time can be elapsed in a fast-forward mode, i.e. notifying to the clock that
time is passed instead of waiting for it. It accelerates the execution, but in
a way that falsify the context of time in the sense that the notion of waiting
for an amount of time is not strictly tested in the IUT. However, it permits
to execute long and huge benchmarks of tests very quickly.

Adaptors are related to the IUT, therefore, they cannot be implemented
in a generic framework. The following interface describes a pattern that
exists for such adaptors:

• stimulate(e), sends an event e to the IUT,

• observe(a), detects an action a sent at a time t by the IUT and

• elapse(d), optionally sends an amount of time to advance dphy in sec-
onds.

4.1.6 Comparison

Comparison returns whether the IUT conforms its model. Following the
rtiocoe conformance defined in Equation 2.1, comparison concretizes the im-
plementation relation which compares the two output traces: σref and σmoni.
This relation is defined in Section 3.2 with the output trace equivalence ∼=
of Equation 3.1. In other words, our framework follows rtiocoe conformance
but comparing actions of same logical instant.

Notice that the rtiocoe conformance allows the system to make some di-
vergences for other inputs. Indeed, it considers an implementation conform,
if it follows at least the specified actions according to the specified inputs,
supposing the behaviors after not specified inputs conform. However, be-
cause we consider the same input trace σin for the model and the IUT, only
the expected inputs are considered in the framework.
As depicted in Figure 4.8, the comparison is done modulo logical instants
with a tolerance ε between two timestamps. This tolerance is due to the time
precision that can be arbitrary high, so we have to fix a bound to clearly
specify after how much duration a timed error is effectively raised.

Comparison Algorithm. Compare two output traces σ and σ′ over the
same output alphabet Act , with no clue on the order of their actions, results
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σref
σmoni

Comparison

σin

Verdict

Figure 4.8: TMBT framework - comparison step. Comparison renders a
verdict answering either the monitored trace σmoni passes the test case or
not. Given the reference trace σref , the logical trace equivalence ∼= defined
in Equation 3.1 is implemented. Comparison manages a tolerance ε between
two timestamps.

in a complexity of O(m× n) where m is the length of σ and n the length of
σ′. The difficulty is that actions are ordered by their timestamp t, but each
action can have a different t and may even be missed in one trace. Hence,
the worst case is seen when the algorithm parses n actions for every m. The
idea in our algorithm is to link the actions of the two output traces. First,
the trace σ′ is parsed constructing a map with its actions, denoted a′. Then,
each action of σ, denoted a, is related to one a′ or marked as unexpected.
Finally, the comparison is done with another traversal of the two traces.

Hence, the algorithm traverses twice the trace σ′, one to construct the
map, the other to compare. Similarly, it traverses twice the trace σ, one to
link the actions together, the other to compare. This algorithm computes
and prints the verdict in O(2m + 2n) in time, and O(m + 2n) in space,
because the map has the length of σ′.

More precisely, we let a = 〈l, t, α〉 be an action of the output trace σ
composed of a label l, a physical timestamp t and α a link to the related
action a′ if present in the trace σ′, ⊥ otherwise. Actions a′ = 〈l′, t′, α′〉 have
the same form as actions a. Notice that we assume the labels known, and if
different, the algorithm needs a symbol table to link l and l′. Comparison is
performed as follows:

(1) We create the map H : l→ 〈l′, t′,⊥〉 for each action a′ of σ′. The map
returns in O(1) the action a′ related to the label l or ⊥ if not present.

(2) ∀a = 〈l, t,⊥〉 ∈ σ:
• a = 〈l, t, a′〉 and a′ = 〈l′, t′, a〉, if H(l) = 〈l′, t′,⊥〉,
• a = 〈l, t,⊥〉 otherwise.

(3) Finally, the Algorithm 1 is performed.

We initialize the map H with the actions a′. This map is used to assign the
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related actions a and a′ in the two traces and avoids to search actions later
in the rest of the algorithm. The algorithm can access to the related action
via the third field α.

Algorithm 1 Delta comparison algorithm.
Input: Two (linked) traces σ and σ′, a tolerance ε.
Output: The verdict of σ ∼= σ′.
function DeltaCompare(σ, σ′, ε)
〈li, ti, αi〉 ← 〈l0, t0, α0〉::σ
〈l′i, t′i, α′i〉 ← 〈l′0, t′0, α′0〉::σ′
while ai 6= ∅ and a′i 6= ∅ do

while |ti − t′i| ≤ ε do
if 〈li, ti, 〈l′j , t′j , ai〉〉 and |ti − t′j | > ε then

return fail
else if 〈li, ti,⊥〉 then

return fail
end if
ai ← ai+1::σ

end while
while |ti − t′i| > ε do

if 〈l′i, t′i,⊥〉 then
return fail

end if
a′i ← a′i+1::σ′

end while
end while
return pass

end function

Briefly, Algorithm 1 is a comparison of σ and σ′ modulo logical instant.
The current actions in σ and σ′ denoted ai and a′i are triples 〈li, ti, αi〉. First,
they are initialized with the first action of each trace. Then, the algorithm
loops until the two traces are handled.

The first loop compares the actions a of the trace σ while its timestamp
t is in the current logical instant t′. The second loop checks the action a′

of σ′ until σ and σ′ are in the same logical instant t again. In this second
loop, we only check either α′ is ⊥. The timestamps comparison is useless
because it is checked in the first loop, however, action in σ but not in σ′ are
not detected in this first step.

The algorithm can return a fail verdict in three cases:
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1. if the timestamp of the related action 〈lj , tj , ai〉 is different than ti,

2. when the action 〈li, ti,⊥〉 is not related, the action is called unexpected
by the model, or,

3. when the specified action 〈l′i, t′i,⊥〉 is not in σ, this action is called
missed by the IUT.

If no fail is returned, the algorithm returns a verdict pass.

Example 4.1.19: With such an algorithm, the following traces σ1 and σ2

are not equivalent but σ1 and σ3 are.

σ1 = 〈a1, 0〉 · 〈a2, 0〉 · 〈a3, 0.5〉 · 〈a5, 1〉
σ2 = 〈a2, 0〉 · 〈a3, 0.5〉 · 〈a5, 1〉
σ3 = 〈a2, 0〉 · 〈a1, 0〉 · 〈a3, 0.5〉 · 〈a5, 1〉

Indeed, σ2 misses the action a1 and is not conformed to σ1. However, σ3 just
switches actions a1 and a2. It is conformed to σ1 because these two actions
are in the same logical instant 0. ♦

4.1.7 Verdict

Our TMBT framework returns a verdict, which is a pretty printed document
to inform testers of the IUT conformance wrt. its model. The document is
spilt in logical instants in order to visualize clearly the actions related to
an external event reception. Each action symbol a ∈ σmoni is listed with
its related model symbol or depicted as unexpected. A delta is depicted if
more than ε duration is seen between the timestamps of the action and its
related model action. Logical instants are separated by a duration in order
to precise the time elapsed between two logical timestamps.

If the high-level requirements specify an ideal input trace, the difference
between the ideal trace and the input trace σin can be depicted in the verdict.
It permits to include events and their differences from the ideal input trace.
This information improves the understanding of the verdict because one
action can be managed in another manner if an event is early or late.

4.2 Model Construction Rules

Our TMBT framework has a construction phase, which, given a AST in input
and a set of construction rules, builds automatically a IRTM. This section
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formally defines the construction rules and details the overview done in Sec-
tion 4.1.2. We introduce two operators to compose FSMs in Section 4.2.1
and present the preliminary andMenv construction rules in Section 4.2.2 and
Section 4.2.3 respectively. Then, we present several examples in order to ap-
ply these construction rules to build different system specificationsMsys in
Section 4.2.4.

The principle of construction rules is to define FSM related to items of
the abstract syntax grammar. Moreover, the composition of these FSM is
formally defined too. This construction is recursive, following the nested
items defined by the grammar, hence, the rules have the form of an inference
tree, constructing or composing FSMs. We define the composition of FSM
by distinguishing two sequences of locations in the FSM definition: providers
and seekers.

Definition 4.1. A type of FSM is a pair 〈p, s〉 where p is its number of
providers and s its number of seekers.

In the following of the section, we shall sometimes write the type of FSM
in exponent, as A〈p,s〉, in order to make it explicit when needed. We call a
FSM of type 〈0, 0〉 complete and depict, in the graphical representation of
FSMs, provider and seeker locations with i◦ and � i where i is an index in
the sequence of providers, resp. seekers.

T 〈1,2〉
µ = p11

s1 1

s2 2

µ?

µ? I〈2,2〉 =

`11 1

`22 2

F 〈2,0〉 =

p11

p22

Figure 4.9: The most used FSMs: T 〈1,2〉, I〈2,2〉 and F 〈2,0〉.

Example 4.2.20: We define three FSMs depicted in Figure 4.9 commonly
used during the construction:
• triggers T 〈1,2〉µ , with µ ∈ Evt ∪ Sig , for starting a FSM at the detection

of some input symbol µ. Every trigger FSM has one provider and two
seekers, corresponding to a start of the FSM in a normal or an error
mode,
• idlers I〈i,i〉, where each location is both a provider and a seeker and
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• enders F 〈i,0〉, with an empty list of seekers.
♦

4.2.1 Operators

The parallel and sequential concatenation operators are denoted by ‖ and
+ respectively. Both of them take two FSMs and return one FSM composed
of their two arguments. The operators are defined according to the type of
FSM they manage.

The binary operator ‖ : 〈n,m〉 → 〈n′, l〉 → 〈p, s〉, with p = max(n, n′)
and s = m + l, is a parallel composition of FSMs defined as follows. Let
A = 〈ΣAin,ΣAout,LA, `A0 ,∆A〉 and B = 〈ΣBin,ΣBout,LB, `B0 ,∆B〉, be two FSMs of
respective types 〈n,m〉 and 〈n′, l〉 and with respective sequences of providers
and seekers: pA1 , . . . , pAn , and sA1 , . . . , sAm ∈ LA, pB1 , . . . , pBn′ , and sB1 , . . . , sBl ∈
LB, with LA and LB disjoint. Their parallel composition is defined by

〈ΣAin ∪ ΣBin,Σ
A
out ∪ ΣBout,LA ∪̊ LB ∪̊ {`0, . . . , `p}, `0,∆A ∪̊ ∆B ∪̊ ∆〉

where:
− `0, . . . , `p are new locations,
− the sequences of providers and seekers ofA‖B are respectively `0, . . . , `p

and sA1 , . . . , sAm, sB1 , . . . , sBl and
− ∆ contains the set of transitions of the form `i −−−→and

`Ai1‖`
B
i2
, with

1 ≤ i ≤ p, such that if i ≤ n then i1 = i, otherwise i1 = n, and if
i ≤ n′ then i2 = i, otherwise i2 = n′.

Example 4.2.21: Figure 4.10 depicts an example of parallel composition
of two FSMs. Note that the set of input and output symbols of A and B are
not required to be disjoint since these symbols are used for communication
between the two FSMs after composition. The FSM A on the left has one
provider and one seeker. On the right, the FSM B has two providers and
seekers. During composition, two and -transitions are created according to
the two providers of B. FSMs A and B are composed by setting the first
providers pA1 with pB1 in parallel with the first and -transition, and pA1 and pB2
with the second. After composition, the FSM C launches the FSM A both in
locations p1 and p2, however, only the corresponding provider is continued
for FSM B. The location `2 for p1 and `3 for p2. ♦

The binary operator + : 〈k, n〉 → 〈n′,m〉 → 〈k,m〉, is a sequential com-
position of FSMs. LetA = 〈ΣAin,ΣAout,LA, `A0 ,∆A〉 and B = 〈ΣBin,ΣBout,LB, `B0 ,∆B〉,
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A〈1,1〉 = p11 s1 1
d µ1! B〈2,2〉 =

p11

p22

s1 1
d a2!

s2 2
a2!

C〈2,3〉 = A‖B =

p11

p22

`1 s1 1
d µ1!

`2

`3

s2 2
d a2!

s3 3
a2!

Figure 4.10: Parallel composition of two FSMs.

be two FSMs with respective types 〈k, n〉 and 〈n′,m〉 and with respec-
tive sequences of providers and seekers: pA1 , . . . , pAk , and sA1 , . . . , s

A
n ∈ LA,

pB1 , . . . , p
B
n′ , and s

B
1 , . . . , s

B
m ∈ LB. Their sequential composition is defined by

〈ΣAin ∪ ΣBin,Σ
A
out ∪ ΣBout,L′, `′0,∆〉

with L′ = (LA \{sA1 , . . . , sAn }) ∪̊ (LB \{pB1 , . . . , pBn′}) ∪̊ {`1, . . . , `n′′}. Where:
− `1, . . . , `n′′ are new locations, not in LA ∪ LB, and n′′ = min(n, n′),
− the sequences of providers and seekers ofA+B are respectively pA1 , . . . , pAk

and sB1 , . . . , sBm,
− `′0 = `i if there exists i ≤ n such that `A0 = sAi , otherwise `

′
0 = `A0 and

finally
− the set of transitions ∆ is obtained by replacing in ∆A ∪ ∆B every

location sAi or pBi by `i for 1 ≤ i ≤ n′′.
Intuitively, every seeker of A is merged with the provider of B with the

same index. Note that if n > n′, then the seekers sAn′+1, . . . , s
A
n of A without

matching providers in B become exit locations in A+B. If n < n′, then the
providers pBn+1, . . . , p

B
n′ of B without matching seekers in A are deleted and

become standard locations in A+ B (neither providers nor seekers).
Notice that we define later special connectors. These connectors are not

handled by the parallel concatenation operator. However, they are handled
as usual connectors in sequential operators.

Example 4.2.22: Figure 4.11 depicts an example of sequential composition
of two FSMs. The resulted FSM C begins with FSM A and continues with
FSM B, merging the seekers of A with the providers of B. ♦
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A〈1,2〉 = p11

s1 1

s2 2

µ1
?

µ
1 ?

B〈2,2〉 =

p11

p22

`2 s1 1
d a2!

s2 2
a2!

C〈1,2〉 = A+ B = p11

`1

`1

µ1
?

µ
1 ?

`2 s1 1
d a2!

s2 2
a2!

Figure 4.11: Sequential composition of two FSMs.

4.2.2 Rules for requirements

We introduce the construction rules in this section. For our examples, we
define the rules over the grammar depicted in Figure 4.12.

requirement ::= ε | event requirement
event ::= evt(e, duration, sequence) e ∈ Evt
sequence ::= ε | action sequence
action ::= act(duration, sequence) | act(duration, a) a ∈ Act
duration ::= d timeUnit d ∈ R+

∗
timeUnit ::= s | t1

Figure 4.12: Example of grammar followed by ASTs in input.

Inference rules. The construction is defined using rules of the following
form:

〈aux 〉 : 〈AST〉 `rule 〈FSM〉

where 〈aux 〉 is a sequence of auxiliary arguments, 〈AST〉 is the element of
the parsed requirements (in abstract syntax) and 〈FSM〉 is the corresponding
FSM constructed and returned.

Processing of requirement. The rule `all constructs the FSM associated
to the parsed requirements.
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: ∅ `all A∅

: req `envMenv : req `sys1 A1 . . . : req `sysn An
: req `all Menv‖A1‖ . . . ‖An

If the AST is empty, the rule `all returns an empty FSM A∅, a FSM with an
empty set of locations. Otherwise, n+1 rules are applied to the requirements
req, with n, the number of rules composing the specificationMsys. Among
this rules, `env constructs the environment modelMenv.

Hence we defineM =Menv‖Msys withMsys = A1‖ . . . ‖An: the model
M is the result of the parallelization of the environment model Menv and
the specificationMsys. The specification is itself the parallel composition of
the other n models. Notice that these FSMs must have the type 〈1, 0〉 and
thatM is complete.

4.2.3 Environment rules

Formally,Menv is a non-deterministic FSM of the form 〈Act ,Evt ,LE , `E0 ,∆E〉,
where the partition of the output alphabet Σout = Evt is Σsig

out = Evt and
Σext
out = ∅. An important point when dealing with a IRTM is that action

emissions are never restricted because action receptions are not explicit in
the test environment. Hence,Menv is always input-enabled and can accept
all its input symbols in every location.

One can construct several test environments to represent different test
hypotheses. In the following of the section, we present two examples of
test environment construction. First, we construct a generic environment
which is easy to specify. Then, we present an environment musically relevant
with parameters to restrict the possible input traces of the test. The two
environment FSMs are built in a single pass through the AST.

1) Generic Environment

For the simple case, we want to construct a generic environment. Such an
environment can send all events in Evt at anytime. Remark that to simplify
the construction here, we do not manage event durations. We specify the
rule `env to parse the sequence of events until the empty list, handling each
event evt of the requirements req:

: evt(e, d, as) `evt E〈1,1〉 : req ′ `env E〈1,0〉

: evt(e, d, as)::req ′ `env E〈1,1〉 + E〈1,0〉 : ∅ `env F 〈1,0〉
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The rule `evt handles each event of the AST by adding a possible emission
of the corresponding event symbol e to the unique location of the FSM. The
FSMs constructed by the rules `evt and `env are depicted in Figure 4.13.
Then, the rule `env assembles the FSMs E〈1,1〉 and E〈1,0〉. These FSMs are
constructed for the current event and the next events constructed by the
recursive call of `env with the rest of the requirements req′ respectively. At
the end, for the empty event sequence case, an ender FSM terminates the
construction ofMenv. Finally,Menv can send all the events in Evt .

evt(e, d, as) `evt `1 1

e!

∅ `env p11

Figure 4.13: Parts of the generic environment FSM.

2) Musical Environment

For the second example, we detail the construction of a test environment
relevant in a musical context, and refer to the high-level requirements as the
score. We assume an ordered sequence of events as specified in the given
score and for each event, an event duration to wait before sending the next
event. Hence, the input sequence defined by this environment model must
be of the form: e1! · de1 · . . . · den−1 · en! · den with ei ∈ Evt and dei the duration
of event ei. We add several options to construct the modelMenv:

• nerr , the number of consecutive events possibly missing and

• κ, the percentage of variation tolerated on the event’s durations.

This second parameter permits the creation of bounds of the form [dei (1 −
κ), dei (1 + κ)] centered around the duration dei specified in the score, called
the ideal duration. We present the construction of Menv for the value of
nerr = 1.

: evt(e, d, as) `evt0 E
〈1,2〉
0 : req ′ `env1 E〈2,0〉

: evt(e, d, as)::req ′ `env E〈1,2〉0 + E〈2,0〉

: evt(e, d, as) `evt1 E
〈2,2〉
1 : req ′ `env1 E〈2,0〉

: evt(e, d, as)::req ′ `env1 E
〈2,2〉
1 + E〈2,0〉 : ∅ `env1 F 〈2,0〉
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evt(e, d, as) `evt0 `1

2

s1 1
e! [d(1− κ), d(1 + κ)]

evt(e, d, as) `evt1
`1

2

p22

s1 1
e!

e!

[d(1− κ), d(1 + κ)]

Figure 4.14: Parts of the musical environment FSM.

The rule `evt0 , on the top, initializes the FSM Menv, by emitting the first
event evt(e, d, s) and waiting for a duration in the interval [d(1−κ), d(1+κ)].
The rule `evt1 , on the bottom, treats each following event of the require-
ments, with the possibility to emit the current event e from the previous
step (provider 1) or the step before (provider 2). The FSMs constructed by
these two rules are depicted in Figure 4.14. Notice that in this case, we
added the rule `evt0 to the set of rules for handling the first event, because
we cannot miss an earlier event than the first one. Then, the rules `env and
`env1 , assemble the FSMs for the first, respectively next, events. At the end,
the same ender FSM is constructed for the empty sequence case but with
two seekers.

evt(e1, 1s, as1);
evt(e2, 1s, as2); where
as1 = act(1s, [a1])
as2 = act(0.5s, [as3]); act(0.5s, [a2])
as3 = act(1s, [a3])

Figure 4.15: An abstract syntax tree example.

`

e1!
e
2 !

`0 `1 `2 `3 `4
e1! e2!

e2!

[0.9, 1.1] [0.9, 1.1]

Figure 4.16: Two environment models constructed from the same inputs. On
the left, the generic model rules, on the right the musical relevant ones with
κ = 0.10 and nerr = 1.
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Example 4.2.23: Figure 4.16 depicts the two Menv models constructed
from the applications of the two environment rules examples to the AST
depicted in Figure 4.15. The requirements specify the emission of an action
ai after each event ei lasting 1 second for i ∈ {1, 2}. The generic environment
model, on the left, allows to send these events at every moment. The second
musical environment, applied with κ = 0.10 and nerr = 1, allows to emit e1

or e2. However:

1. in case of e1 first, waits for a duration between 0.9 and 1.1 seconds
before emitting e2 and prevents from sending e1 twice, and,

2. in case of e2 emitted first (constructed from the index 2 of the rule
`evt1), stops emitting events.

♦

4.2.4 Toy example model

We continue the presentation of our construction rules with respect to the
abstract syntax depicted in Figure 4.12. In this section, we detail three
examples to construct the IUT specificationMsys according to different ap-
proaches.

Our specification aims at constructing models expressing requirements
such as: I want action a1 after each event e1 or 3 seconds after e2. There
are lots of systems that can be targeted by such specifications. We can of
course cite IMS as MAX-MSP [78] and Chuck [48] systems but can include
home-automation, robotics or internet of things systems.

The abstract syntax of Section 4.1.1 can express this kind of specifica-
tions. Indeed, the syntax allows to specify an action sequence as triggered
by either an event or an amount of time after an event detection or an-
other action activation. The three next examples are based on this syntax
and aim at constructing such kind of specifications. The examples are three
construction options according to different semantics of the abstract syntax.

First, we present the main rule as follows:

: req `envMenv : req `sys Msys

: req `all Menv‖Msys

The rule `sys constructs the IUT specificationMsys aside of test enviren-
mentMenv.
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1) Event reaction

For the first example, the IUT must react to event detections but only once
for each symbol. The only rule `sys, managing the FSMs ofMsys, constructs
a FSM of the form A = 〈Evt ,Act ,LA, `A0 ,∆A〉 specifying behaviors of the
IUT in reaction to the events of the test environment.

e : as `seq A〈1,0〉s : req ′ `sys A〈1,0〉

: evt(e, d, as)::req ′ `sys A〈1,0〉s ‖A〈1,0〉
: req ′ `sys A〈1,0〉

: evt(e, d, ε)::req ′ `sys A〈1,0〉

: ∅ `sys F 〈1,0〉

The FSM As of type 〈1, 0〉 is associated to evt(e, d, as) and describes the
behavior of an action sequence as triggered by an event e. The rule `sys
returns the parallel composition of As with the FSM A built by a recursive
call of `sys with the rest of the requirements req′. On the right, the second
rule `sys returns the result of its recursive call uniquely. This second case
happens when an event does not trigger action (denoted with ε in the third
field of evt). When the end of requirements is reached, the FSM is terminated
by adding an ender F 〈1,0〉 with 1 provider.

We now define the rule `seq for building the FSMs associated to an action
sequence as. The rule parses a sequence of actions as and sends these actions
accordingly.

e : `seq0 A
〈1,1〉
e : as `seq1 A

〈1,0〉

e : as `seq A〈1,1〉e +A〈1,0〉

d : `delay A
〈1,1〉
d : a : `act A〈1,1〉a : as′ `seq1 A

〈1,0〉

: act(d, a)::as′ `seq1 A
〈1,1〉
d +A〈1,1〉a +A〈1,0〉

d : `delay A
〈1,1〉
d : asa `seq1 A

〈1,0〉
s : as′ `seq1 A

〈1,0〉

: act(d, asa)::as
′ `seq1 A

〈1,1〉
d + (A〈1,0〉s ‖A〈1,0〉) : ∅ `seq1 F

〈1,0〉

The rule `seq, on the top, initializes the FSM, by receiving the event e given
in the rule argument and applying the rule `seq1 to the sequence as. The
rule `seq1 treats each following action of as. Three cases can be constructed
according to the item parsed:
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(1) An atomic action act(d, a) is parsed (middle rule): The rule `delay waits
for the duration d if greater than 0, and the rule `act sends the action
symbol a. The FSMs are sequentially concatenated with A, built by
the recursive call of `seq1 with as′.

(2) A sub-sequence of actions act(d, asa) is parsed (bottom left): As for an
atomic action, `delay waits for the duration d. The FSM is sequentially
concatenated with As and A built by two recursive calls of `seq1 with
the sub-sequence asa and the rest of the sequence as′ respectively.

(3) The empty sequence is reached (bottom right): an ender is added to
the FSM with provider 1.

The FSMs constructed by these rules for the base cases are depicted in Fig-
ures 4.17 and 4.18. Notice that here, they return a recv -, a wait- and an
emit- transition.

e : `seq0 p11 s1 1
e?

Figure 4.17: FSM constructed by `seq0 .

d : `delay p11 s1 1
d a : `act p11 s1 1

a!

Figure 4.18: FSMs constructed by `seq1 .

Example 4.2.24: We show the model M obtained by the application of
the construction rules above to the AST depicted in Figure 4.15. The re-
quirements specify the emission of the action a1, 1 second after the detection
of the corresponding event e1. Then, a2 (resp. a3) must be emitted 1 second
(resp. 1.5 seconds) after e2 detection. Notice that a3 is triggered with a
sub-sequence of actions as3. The model Msys is depicted in Figure 4.19.
We omit the test environment and denote it withMenv. The FSMs built at
each application of a rules `seq0 and `seq1 are framed and annotated with:
A〈p,s〉a where 〈p, s〉 is the type and a is the AST item parsed, or, F when
terminated. ♦

2) Loop reaction

In the second example, the IUT must react to several event detections when
the sequence of actions related to this event symbol is terminated. This
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`0

`1

`2

`3

Menv

e1? 1s a1!

e2? 0.5s 0.5s a2!

1s a3!

A〈1,1〉e1 A〈1,1〉a1

F〈1,0〉

A〈1,1〉e2 A〈1,1〉as3 A〈1,1〉a2

F〈1,0〉

A〈1,1〉a3

F〈1,0〉

Figure 4.19: Msys resulted from the event reaction rules.

example begins with the same rule `sys than the first example, managing the
FSMs ofMsys.

In order to specify loops in FSMs, we let ` be a special connector which
can be both providers and seekers. This connector allows to specify a location
stored in the continuation of the construction. Moreover, ` is not merged
during parallel compositions of FSMs, but is concatenated with sequential
composition operators. Such a connector is denoted as a pre-exponent `A in
a FSM. Moreover, we define a linker in order to merge connectors. A linker
〈i,j〉L is a FSM of type 〈2, 0〉 with two providers, i and j. It is the only way
for composing a special connector with other connectors.

We now define the rule `seq for the second example. This rule builds the
FSMs associated to an action sequence as according to the second approach.
The rule parses a sequence of actions as and sends these actions accordingly.
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e : `seq0
`A〈1,1〉e : as `seq2

`A〈1,0〉

e : as `seq `A〈1,1〉e +`A〈1,0〉

d : `delay2
`A〈1,1〉d : a : `act2 `A〈1,1〉a : as′ `seq2

`A〈1,0〉

: act(d, a)::as′ `seq2
`A〈1,1〉d +`A〈1,1〉a +`A〈1,0〉

d : `delay2
`A〈1,1〉d : asa `seq1 A

〈1,0〉
s : as′ `seq2

`A〈1,0〉

: act(d, asa)::as
′ `seq2

`A〈1,1〉d + (A〈1,0〉s ‖`A〈1,0〉)

: ∅ `seq2
〈`,1〉L

The rule `seq, on the top, behaves as the first approach but adds a special
seeker ` to the first location of the FSM and applies the rule `seq2 to as. The
rule `seq2 treats similarly to `seq1 the parsed items, but stores the connector `
in addition. Notice that when a sub-sequence of actions act(d, asa) is parsed,
the previous rule `seq1 is applied to the sequence asa. At the end, instead
of terminating with an ender F 〈1,0〉, a linker is constructed to merge the
connector 1 with the special connector `. The FSMs constructed by these
rules are depicted in Figure 4.20.

e : `seq0 p11

`

s1 1
e?

d : `delay2 p11 s1 1
d

a : `act2 p11 s1 1
a!

Figure 4.20: FSM constructed by `seq2 and the new `seq0 .

Example 4.2.25: We show the model M obtained from the application
of the second construction rules to the AST depicted in Figure 4.15. The
modelMsys is depicted in Figure 4.21.

The linkers FSM, constructed with seekers ` and 1, merge the last loca-
tion with the first one, creating the required loop. Notice that the model
constructed for as3 is not modified, because the `seq1 rule is applied to the
sub-sequence of actions as3. ♦
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`0

`1

`2

`3

Menv

e1? 1s

a
1 !

e2? 0.5s 0.5s

a
2 !

1s a3!

A〈1,2〉e1 A〈2,2〉a1

L〈2,0〉

A〈1,2〉e2 A〈2,2〉as3 A〈2,2〉a2

L〈2,0〉

A〈1,1〉a3

F〈1,0〉

Figure 4.21: Msys resulted from the loop reaction rules.

3) Concurrent reaction

In the third example, the IUT must react to every event detection. However,
to prevent from an unbound number of running FSMs, an event can be emit-
ted to terminate all the FSMs related to its action sequences. The example
begins with the same rule `sys than the first example, managing the FSMs
ofMsys.

We add the events λ1 and λ2 in Evt , to terminate FSMs related to e1

and e2 respectively. Moreover, we add another special connector k to the
existing `. Finally, the event λ is given to `seq in parameters with its related
event e.

We now define the rule `seq for the third example. This rule builds the
FSMs associated to an action sequence as according to the third approach.
The rule parses a sequence of actions as and sends these actions accordingly.
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e, λ : `seq0
〈`,k〉A〈1,1〉e λ : as `seq3

kA〈1,0〉

e, λ : as `seq 〈`,k〉A〈1,1〉e +(〈`,1〉L‖kA〈1,0〉)

d, λ : `delay3
kA〈1,1〉d a : `act3 kA〈1,1〉a λ : as′ `seq3

kA〈1,0〉

λ : act(d, a)::as′ `seq3
kA〈1,1〉d +kA〈1,1〉a +kA〈1,0〉

d : `delay3
kA〈1,1〉d λ : asa `seq3

kA〈1,0〉s λ : as′ `seq3
kA〈1,0〉

λ : act(d, asa)::as
′ `seq3

kA〈1,1〉d + (kA〈1,0〉s ‖kA〈1,0〉)

λ : ∅ `seq3
kF 〈2,0〉

The rule `seq, on the top, initializes the FSM, by receiving the event e given
in the rule argument and adding the special seekers ` to the first location
of the FSM. The rule `seq waits for the event λ together with e and creates
a kill location which is the target of the recv -transition related to λ. The
special seekers k is added to this kill location. Then, `seq applies the rule
`seq3 to as with λ in parameter. The linker 〈`,1〉L merges the first location
with one target of the and -transition.

The rule `seq3 treats similarly to `seq1 the parsed items, but stores the
connector k in addition. Notice that when sub-sequence of actions act(d, asa)
are parsed, the rule `seq3 is applied to the sub-sequence asa. At the end,
instead of terminating with an ender F 〈1,0〉, kF 〈2,0〉 terminates the FSM by
deleting the connectors 1 and k. The FSMs constructed by these rules are
depicted in Figure 4.22.

e, λ : `seq0
p11

`

s1 1

sk k

e?

λ?

d, λ : `delay3
p11 s1 1

sk k

d

λ?

a : `act3 p11 s1 1
a!

Figure 4.22: FSMs constructed by `seq3 and the new `seq0 .
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Example 4.2.26: We show the model M obtained by the application of
the third construction rules to the AST depicted in Figure 4.15. The model
Msys is depicted in Figure 4.23.

The linkers FSM, constructed with seekers ` and 1, merge a target of the
and -transition with the first location, creating the required loop. The special
connector k stores a unique location through the construction. It results in
one kill location targeted by all the receive transitions of λ, for each FSM
managing a sequence of actions triggered by an event. The kill location, can
be used to manage a common sequence before terminating the FSMs. ♦

`0

`1

`2

`3

Menv

e1? 1s a1!

λ1?
λ1?

e2? 0.5s 0.5s a2!

λ2?
λ2?

λ2?

1s a3!

λ
2
?

A〈1,2〉e1 A〈2,2〉a1

F〈2,0〉

A〈1,2〉e2 A〈2,2〉as3 A〈2,2〉a2

F〈2,0〉

A〈1,1〉a3

F〈1,0〉

Figure 4.23: Msys resulted from the third example.

4.3 Input Generation Algorithms

The generation phase of our TMBT framework described in Section 4.1.3,
must generate a suite of input traces Tin, defining the quality of the test.

In this section, we detail several algorithms in order to generate such a
suite Tin. First, we focus on model-based algorithms in Section 4.3.1, and
presents the existing algorithms used by our framework to construct a Tin
from a model M. Then, we present, in Section 4.3.2, requirement-based
algorithms. These algorithms are implemented for our musical application
case, using a formal music representation to generate relevant suite of in-
puts. Thereafter, we introduce in Section 4.3.3 probabilistic models, de-
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tailing another approach to generate relevant input suites with model-based
algorithms.

We define the test quality as the coverage of the modelM by its suite of
test cases, for a test case 〈σin, σref〉 as defined in Section 4.1.3. More precisely,
for the set Tref = {Msys(σin) ∀σin ∈ Tin} of reference traces, the test quality
for a suite Tin is the percentage of model items reached when computing the
set Tref duringMsys simulations.

Moreover, we define four kinds of algorithms to generate an input suite:
offline, online, model-based and requirement-based. In the following of the
section, we present some algorithms according to these four kinds and com-
pare them using two characteristics: the coverage of a generated suite, and
its state explosion when the size of the modelM increases. We define state
explosion as an impossibility to generate the suite Tin because the memory
or time required by the algorithm is too large.

4.3.1 Model-Based Algorithms

Given a modelM, model-based algorithms useM to generate a set of input
traces Tin. This set is impacted by the possible input sequences permitted
by the test environmentMenv inM.

`0 `1 `2 `3 `4 `5
e1! 0.5 e3! 1.142 e4!

`0 `1ei!

d

`0 `1 `2 `3 `4 `5 `6 `7
e1! [d1, d

′
1] e2! [d2, d

′
2] e3! [d3, d

′
3] e4!

e2!

e3!

e3!

e4!

e4!

Figure 4.24: Three test environment examples: generic, singleton, and mu-
sically relevant with nerr = 2 and di = dei (1− κ) and d′i = dei (1 + κ).

For instance, the Menv models, depicted in Figure 4.24, have three dif-
ferent test meanings:
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• The first test environment model, on the top, is the most general and
emits any event of any duration. Remark that this test environment
is the generic one constructed in Section 4.2.3 with time management.
However, the set of possible input sequences is huge and contains all
the sequences (without simultaneous events) accepted by the model
Msys.

• The second test environment model is the strictest model and only al-
lows one trace in Tin: σin1 = 〈0, e1〉·〈e3, 0.5〉·〈e4, 1.642〉. The algorithm
should not have state explosion problems but the test quality is very
low because the model items covered are strictly those ofMsys(σin1).

• The last test environment model is relevant for musical cases and pro-
vides parameters nerr and κ to control the possible input sequences
during generation. In the example, the events must be emitted in a
chronologic order following the score, but permits some mistakes by
missing until two consecutive events. Moreover, the event durations
are chosen in an interval around the ideal duration, modeling the pos-
sible interpretations a musician can do when playing music.

Notice that Menv models target a sub-set of real environment behaviors.
This notion is useful to avoid obvious or impossible input sequences that are
costly and useless in the tests. It is for example impossible to emit the event
quit before start. Moreover, it is useful to reduce the test session in presence
of state explosion.

Exhaustive generation

We present an offline and model-based algorithm provided in our TMBT
framework thanks to an existing tool. The tool CoVer [18], of the Uppaal
suite [44], is used in order to generate automatically an exhaustive suite of
input traces Tin from a network of Timed Automata and given some coverage
criteria. To compute such a suite, the coverage criteria are translated into a
finite state automaton Obs, called observer, monitoring the parallel simula-
tion of the TA network. Each transition to a final state of Obs is labelled by a
predicate according to the coverage criteria. A predicate becomes true when
the corresponding monitored item is reached in the simulation. Finally, a
monitored item can be a transition, a location or a variable declaration/use
in the TA network. Then, the model checker Uppaal is used by CoVer to
generate the set of input traces Tin resulting from an execution of the syn-
chronized product ofM′env andM′sys with Obs. The execution is performed
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until the final states of Obs are reached. M′env andM′sys are the translated
Uppaal’s format TAs from the IRTMs Menv and Msys, this translation is
done under-restrictions and following the procedure described Section 3.2.

For loop-free IRTMsMenv andMsys, with an observer checking that all
transitions ofM′env andM′sys are fired, CoVer will return a suite of test cases
complete for non-conformance: if there exists an input trace σin ∈Menv such
that σmoni = IUT(σin) and σref =Msys(σin) differ, then the suite of test cases
will contain such an input trace.

In practice, we avoid state explosion with appropriate restrictions on
Menv, using the parameters nerr and κ presented in Section 4.2.3 for the
construction ofMenv.

The main limitations of this offline approach are that:
(a) it does not scale well for testing real requirements,
(b) for our application case, the input traces are not musically relevant

because CoVer strictly follows the model constraints and
(c) the IRTM must follow the translation restrictions.

However, this approach is well suited for debugging and regression tests,
using small ad-hoc requirements.

Online generation

The second model-based algorithm is online and implemented in the VM.
Online algorithms simulate the model, meanwhile the IUT is stimulated. It
is a model-based and real-time testing approach which performs a loop of
four actions:
• verify action if received from the IUT,
• send an event to the IUT,
• wait for a duration to advance some time,
• or validate the test by terminating it.

In practice, a set Z of possible next states in the model is computed and
updated after each action. Hence, an online test case returns fail if Z becomes
empty.

Remark that Tron [44], the existing Uppaal’s tool for online testing, could
not be used in our application. The reason comes from the restriction R1 of
the translation IRTM into TA in Section 3.2. Indeed, this transition requires
that the Model Time Unit (mtu) of a TA network follows a tempo curve Φ.
However, Tron can manage several clock rates only when they are defined as
a constant factor of the wall clock. Hence, this constraint does not comply
with the notion of an evolving tempo which is crucial in our case.
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Model VM Adapter IUT

∼=

Verdict

e e

a a′

Figure 4.25: Online timed testing workflow

Figure 4.25 depicts our online timed testing approach. Instead of com-
puting the set Z, we use the determinism of IRTMs in its action emissions
to send to a comparator (∼=) the reference and monitored output symbols,
timestamped by the comparator when received. Indeed, only two possible
non-deterministic cases can be seen in IRTMs: a wait-transition of the form
` −−−−−−−−−−→[d(1−κ),d(1+κ)]

`′ for some 0 ≤ κ < 1, and, branches with several emit-
transitions. This non-determinism allows the online algorithm to choose: an
appropriate value of duration to wait, or a symbol to emit, when the VM
must provide an input (for resolving the cases (2), (3) and (4) of online al-
gorithm actions). These choices correspond to the “on-the-fly” generation of
an input trace σin.

Our online algorithm implemented in our TMBT framework contains four
cases:

• One or more timestamped actions, 〈a′i, t′i〉, are received from the IUT.
The corresponding model actions, 〈ai, ti〉, are searched and the equa-
tion |ti−t′i| ≤ ε is tested. The inverse is performed if 〈ai, ti〉 is received,
implying two lists of actions, say σo and σ′o, stored in the comparator.
The actions are retrieved from the lists if their related actions are
found.

• Assume that the VM is in state s = 〈t, n,Γ, pc, θ〉 and that an (emit)
move can be executed. More precisely, assume that the running loca-
tion Γ[pc] = 〈`, γ, β〉, where ` is a location ofMenv, and that the branch
at ` contains several emit-transitions with the symbols e1, . . . , en ∈
Evt . Then, the VM chooses randomly one of e1, . . . , en and executes
the (emit) move with it.

• Assume that a (delay) move can be applied to the state s = 〈t, n,Γ, pc, θ〉
and the running location is Γ[pc] = 〈`, γ, β〉. The VM will choose
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randomly a duration δ following the conditions of the (delay) move.
More precisely, we compute the bounds δmin and δmax using the wait-
transition ` −−−→[d,d′]

`′ as follows: δ = Φ(d)−γ and δ′ = Φ(d′)−γ. Then,
the VM chooses randomly δ in [δ, δ′] satisfying the conditions (2) and
(3) of the (delay) move. Notice that if σo or σ′o is not empty at this
point, fail is returned from the test and the IUT does not conform the
model. Indeed, we have reached the end of a logical instant and we
found missed or unexpected outputs.

• The test case is terminated and pass is returned if σo ∪ σ′o = ∅.

The points (2), (3) and (4) are performed if no action is pending in (1).
At the end, the missed (resp. unexpected) symbols are in the lists σo (resp.
σ′o).

In conclusion, the ad-hoc online method permits to test the IUT with
IRTMs using the online approach, impossible with existing tools. It allows
non-determinism on the model, dealing with state explosion by simulating in
real-time the model and avoiding the storage of sets of traces (σin, σref and
σmoni stored in the offline approach). Moreover, online testing is fast and
support real cases. However, we still need to improve the coverage of the test
cases related to our online generation algorithm. Therefore, it is not clear
for now how to compute relevant input traces during online generation.

4.3.2 Requirement-Based Algorithms

In order to compute Tin, generation algorithms can focus on a set of most
relevant input traces rather than to compute an exhaustive suite on a model
M. However, the relevance of input traces due to the requirements context
can be lost or reduced when one abstracts the timed behaviors requirement
into M. Requirement-based algorithms generate a relevant Tin from the
requirements in order to use another, and more relevant, representations
than the modelM.

This section presents a musical solution to generate relevant input traces
via an offline algorithm. In the following of the section, we recall the musical
sense of an input trace σin and present a relevant musical representation for
such traces. Then, we use this representation during generation as a guide
for our requirement-based algorithm.
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A musical context

In a musical point of view, the document containing high-level requirements,
is called a score. We define the ideal trace as the expected sequence of input
events written in the score. It is the sequence of events that must be played
by musicians.
For a sequence: νidealtin

= e1! ·de1 ·e2! ·de2 · . . . ·den−1 ·en!, we define the related
ideal trace σidealin :

〈e1, 0〉 · 〈e2, de1〉 · . . . · 〈en,Σi=1
n−1dei〉

We recall that usually, ideal traces are in an abstract time, called beat.
During performance, the ideal trace will be “interpreted” by musicians given
a concrete input trace in physical time more or less far from the ideal one.
This notion of performance, presented concretely in Section 2.1, is formally
defined by timing functions.

Timing Function. A theory has been proposed to define a performance
using Timing Functions (TIFs). Known as Time-maps [59], Time-warps [39]
or Time-deformations [5], TIFs are monotonically non-decreasing functions
mapping score durations (in beats) in performed durations (in seconds). A
TIF is a pair of time-warping functions 〈f×, f+〉, the former defines a tempo-
curve function, a tempo variations through a performance. The latter is
a time-shift function and defines local event’s timestamp alterations such
as a swing movement. The first intuition is to consider three aspects of
a music performance: the temporal structure (of the score rhythms), the
global musician tempo and the local timing variations. Although tempo and
time-shift are mathematically related, they are very different musical notions.
Moreover, a composition operator is defined in order to sequentially compose
several TIFs to build relevant musical performances.

The language Nyquist [40] comes from the time-warping formal notion,
and implements such operators called stretch and shift. The first deals with
tempo variations and the second expresses operations such as delay, rest or
pause. As an example, the operation (at 10 (stretch 2 (score))) in Nyquist
performs the score with a pace divided by two and event dates shifted by 10
seconds. However, in these functions the temporal structure is lost on the
opposite of TIFs which track the score structure.

In order to use TIFs to represent performances, we detail the application
of such functions to a relative time trace as defined Section 3.1. Given a
relative timed traces in performance time σin composed of triples 〈e, t, p〉 ∈
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Evt × tσin × R+
∗ , the application of a TIF 〈f×, f+〉 returns another relative

timed trace σ′in such that:

〈αi, f+(ti), f×(pi)〉, ∀ 〈αi, ti, pi〉 ∈ σin

Intuitively, the time-shift function f+ modifies the event musical times-
tamps whereas the tempo curve f× alters the tempo values of a musical
trace.

t(score)

tσin (b)

0 1 2 3

0.9

1.9

2.9

tσin (b)

tphy(s)

0.9 1.9 2.9

0.897

1.917

2.962

t(score)

tphy(s)

0 1 2 3

0.897

1.917

2.962

Figure 4.26: Example of a TIF, from left to right: the time-shift function
f+, the tempo curve f× and the corresponding TIF. Gray lines depict ideal
values.

Example 4.3.27: Given a mixed score specifying a sequence of four quar-
ters (each note lasts one beat) played with 60bpm, the ideal trace is 〈e1, 0, 60〉·
〈e2, 1, 60〉 · 〈e3, 2, 60〉 · 〈e4, 3, 60〉. From this trace, we want to describe a per-
formance inducing: a swing, shifting the event timestamps to 0.1 beat earlier,
and, a decelerating tempo from 60.2 to 56bpm. The performance is formally
defined by:

- a time-shift of 10%, and
- a tempo curve decreasing at each event detection.

We recall that a relative trace defines piecewise constant tempo curves.
Hence, these functions are applied to each event, which is each item of an
input trace.

These two functions are depicted in Figure 4.26 and detail their appli-
cation to our ideal trace: f+, on the left, shifts the ideal timestamps, and
f×, on the middle, alters the tempi and translates performance time into
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physical time. The TIF is depicted on the right and applies the previous two
functions. The result is the relative input trace σin1:

〈e1, 0, 60.2〉 · 〈e2, 0.9, 58.8〉 · 〈e3, 1.9, 57.4〉 · 〈e4, 2.9, 56〉

In order to compute the corresponding physical timestamps, we apply the
translation function Φ to the relative event durations with the current tempo:
dphy
i = (dσini * 60)/pi, with dσini = ti − ti−1.

Finally, we obtain the physical sequence: ν1 = e1! ·0.897·e2! ·1.020·e3! ·1.045·
e4! ·1.071 resulting to the physical input trace σin1

′:

〈e1, 0〉 · 〈e2, 0.897〉 · 〈e3, 1.917〉 · 〈e4, 2.962〉

♦

The TIF representation is a good solution to produce relevant perfor-
mances, we have so a formal representation and can compose them to con-
struct other performances. Moreover, it is well adapted to our test traces
representation of performances because each function is applied to a specific
field of a relative input trace.

Translation. Notice that a physical trace can be the translation of an
infinity of relative time traces. We saw that the translation of σin1 is σin1

′.
However, we can have the same physical trace from other relative traces. For
example, one specifying only a tempo change, and, the other only time-shifts:

σin2 = 〈e1, 0, 66.889〉 · 〈e2, 1, 58.823〉 · 〈e3, 2, 57.416〉 · 〈e4, 3, 56.022〉
σin3 = 〈e1, 0, 60〉 · 〈e2, 0.897, 60〉 · 〈e3, 1.917, 60〉 · 〈e4, 2.962, 60〉

We can easily compute these traces from the equations below because our
ideal trace considers a tempo pi = 60bpm and event durations of dσini = 1
beat.

dσini = (dphy
i ∗ pi)/60 = dphy

i

with pi = 60.
pi = (dσini ∗ 60)/dphy

i = 60/dphy
i

with dσini = 1. The equations are computed from the function Φσin−1. How-
ever, with these traces, it is much harder to understand what was the musi-
cian behavior during performance than with the trace σin1.
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Interpretation. Given a relative input trace σin of triples 〈ei, ti, pi〉, we
can have two different interpretations:

• a musician plays the event ei at ti beat with a tempo of pi, or

• the musician’s event ei is detected at ti beat with a tempo of pi.

The first interpretation is musical and relevant when, for example, we de-
scribe performances with TIFs. Whereas, the second is comprehensible for
a model input, where the input trace is a detection of a continuous IMS
module. However, it implies a different computation of physical values:

• in the first case, the equation to compute physical durations is: dphy
i =

(dσini * 60)/pi),

• in the second it is: dphy
i = (dσini * 60)/pi+1.

Indeed, in the second case the onset of ei+1 is detected at ti+1 with the
tempo pi+1. However, the detected tempo is in fact the ei’s.

We distinct these two input trace interpretations by calling performances
the first traces and recognition traces the seconds. In this section, we dealt
with performances.

Fuzzing algorithm

Given an ideal trace σidealin interpreted as a performance, the fuzzing algo-
rithm consists of starting with σidealin associated to a mixed score and adding
deformations of several kinds. For this purpose, we use TIF representations
in order to create musically relevant performances.

The implemented fuzzing function takes in input an ideal trace and pa-
rameters for bounding the deviations on the time-shifts, the tempo values
and the number of missing notes. It generates some random values within
theses limits and applies them to return an input trace σin’ as a mutation of
the σidealin .

An interesting open question in this context is the definition of TIFs for
the generation of covering test suites following criteria similar to those of the
model-based algorithms. The advantages of the requirement algorithm are
their easy and fast execution. However, the algorithm cannot provide yet a
good coverage by the input trace generated.
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4.3.3 Stochastic Algorithms

Computation of relevant sets of input traces Tin can be done with model-
based algorithms. A solution consists in adding probabilities to the model
for specifying the relevance of transitions.

This section presents model-based algorithms using probabilities inM to
generate relevant input traces. First, an implemented algorithm is proposed
following a brute-force approach. Then, a smarter algorithm is detailed to
avoid systematic and useless simulations during the generation of Tin.

An extension of TA, the Probabilistic Timed Automata [65] (PTA), re-
lates a state and an action to a probability distribution over the set of states.
In short, a probability distribution over a set X is a function that assigns a
probability in [1, 0] to each element of X , such that the sum of the proba-
bilities of all elements is 1. Then, during simulation of probabilistic models,
solving functions, called adversaries, are in charge of computing and choosing
a path in a set of probabilistic edges. In [49], a probabilistic ioco conformance
(pioco) is formally defined for performing probabilistic MBT, allowing formal
test procedures for non-deterministic systems.

`0 `1 `2 `3 `4 `5 `6 `7
e1!

3
6
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′
3] e4!

3
6

e2!

2
6

e3!

1
6

e3!

2
6

e4!

1
6

e4!

3
6

Figure 4.27: Probabilistic test environment example.

Probabilistic models can be used to specify the relevance of input se-
quences in test environments Menv. Indeed, the relevance of a trace can
be computed during its generation in order to drop traces with a low prob-
ability. Figure 4.27 depicts an example of IRTM with probabilities. The
environment modelMenv has probabilistic values on its emit-transitions. In
this example, the fact of sending an event i + n with n > 1 and missing at
least one event has a lower probability than playing a performance without
mistakes. This solution prevents from generating input traces with lots of
missed events, which is musically irrelevant. Moreover, the choice of duration
values can follow a normal function with a mean set to the ideal duration of
events. Hence, more the generated value δ within these bounds is far from
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the ideal value, more its probability is low. Combining these two adver-
saries, resolving the event and duration choices, improves the model-based
algorithms coverage without managing complex functions.

Uppaal-SMC. SMC [43] is another extension of Uppaal to specify dynamics
and stochastic behaviors of systems. This extension manages a multi-rate
clock set, probabilistic transitions and uses the Statistical Model Checking
(SMC), an alternative model checking technique to avoid an exhaustive ex-
ploration of the model state-space. Thanks to this tool, two algorithms based
on probabilistic models were implemented to improve generation of relevant
input traces.

1) Brute-force Algorithm

Given a probabilistic model Menv, specifying the relevance of its possible
paths, via probabilities or/and intervals of durations. The first idea is to
generate N input traces σin fromMenv and compute their frequency.

In order to gather several physical traces, we define a set of percentages
of event duration K = κ1, . . . , κn, such that 0 < κi < κi+1 < 1. The set K is
a set of regions gathering a range of durations considered as having a same
probability. The algorithm requires the ideal event durations of the score
and proceeds as follows:

1. First, N stochastic simulations are performed with Uppaal − SMC, to
generate the set of input traces Tin following the probabilities inMenv.

2. Then, we construct a tree T to gather and count the trace frequencies.
T is a tree with weight nodes and alternating event- and region-edges,
denoted t −−→ei t′ and t −−→κi t′, with ei ∈ Evt , κi ∈ K and t, t′ two
weighed tree nodes. We denote t++ the incrementation of the weight
in the node t.

3. For each input trace σin ∈ Tin, we start from the root of T and construct
or traverse it, according to the input sequence νi related to σin.

We recall that an input sequence is a sequence of ei! ·di, with ei! the event
emitted and di its duration. The algorithm counts the frequency of an input
sequence νi by handling the sequence of items in three cases:

1. ei::ν ′, an event ei is parsed, the transition t −−→ei t′ is taken,

2. di::ν ′, a duration is parsed, we take the transition t −−→κi t′, where
dei ∗ κi−1 < di < dei ∗ κi+1 with dei the ideal duration of ei, or
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3. the end of νi is reached, we execute t++, the weight of the current node
is incremented.

Finally, we obtain the frequency of each set of κ-similar traces pri with the
equation:

pri =
ti
|Tin|

for each node in ti ∈ T (excepted the root).

Then, given a threshold γ, the traces with less than γ frequency are
retrieved from Tin. The algorithm has a complexity of O(2 ∗N) in time and
O(N) in space, with N = Σn

i=0|σi| ∈ Tin, the size of all the input traces in
the set Tin. Indeed, it implies N simulations and traversals of each trace in
Tin.

2) Back-Counting Algorithm

The second algorithm prevents from computing an input trace and discards it
at the end (because of a too low probability). Given a threshold γ, the second
algorithm generates only the set Tin such that, ∀σin ∈ Tin, pr(σin) ≥ γ, with
pr(σin) the probability to have the input trace σin. The idea is to associate,
in the last model location ofMenv, the value γ, and computes the minimum
pr(σin) required to fulfill pr(σin) ≥ γ at each model location.

The algorithm rewrites the model Menv, from its last location to its
initial location `0, adding:

• a condition into guards and

• an assignment into updates

to each model transition.
More precisely, let the variable pr be the probability associated to a model

location, and denoting an abstract model transition with 〈`′, pr′〉 −→ 〈`, pr〉
where `′, ` are model locations and pr′, pr are their associated probability
variable before and after the transition. The variables pr are initialized to
>, the greatest value, for all the locations.

Moreover, a variable p stores the current probability of σin, during its
generation and is initialized to 1 in location `0. Following the breadth first
step method, the algorithm executes the following rewriting rules:

〈`′, pr′〉 −→β 〈`, pr〉 〈`′, pr′′〉 −−−−−−−−−−−→β, p≥pr′, p=p∗β 〈`, pr〉
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with pr′ = pr
β , pr

′′ = min(pr′′, pr′) and β ∈ [0, 1].

〈`′, pr′〉 −−−−−−−−→[dmin,dmax] 〈`, pr〉 〈`′, pr′′〉 −−−−−−−−−−−−−−−−−−→[dmin,dmax], p≥pr′, p=p∗D 〈`, pr〉

with pr′ = pr
D , pr′′ = min(pr′′, pr′) and D = pr(δ) ∈ [0, 1] is the probability

of the duration chosen when the transition is fired.
The first rule traverses emit-transitions with a probability of β. The rule

updates the variable pr′′ according to β and pr. Then the rule prohibits to
fire the transition if p is too low thanks to the guards on p. The second rule
traverses wait-transitions and performs the same modifications but with the
probability of δ, the duration generated by the adversary.
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Figure 4.28: Probabilistic test environment after rewriting, omitting input
event emissions.

For instance, the model Menv depicted in Figure 4.27 is rewritten with
γ = 0.165. The result is depicted in Figure 4.28. Blue values, under transi-
tions, are the upper bounds of p in the guard transitions (p ≥ pr′) and red
values, over locations, are the minimum values of pr′′ during the rewriting
procedure.

In the example, the three transitions can be taken in location `0, hence,
e1 and e2 can be missed. In location `2, if e1 was played, e2 can be missed,
because p should be 0.5 = 1 ∗ 1

2 and the guard 0.5 ≥ 0.5 holds in order to go
to `5. However, the third transition to `7 cannot be taken because the guard
requires a probability more than 0.99 and we have p = 0.5. No missed event
can be done in location `4 for the same reasons.

This second algorithm is more promising than the first one because just
the model is parsed rather than Tin. Hence, the algorithm complexity is
lower and near O(t ∗N), with t the number ofMenv transitions and N the
number of the generated input traces in Tin.

Unfortunately, this kind of model cannot be simulated with SMC because
probabilities and variables are managed separately in the current version.
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Moreover, this method is not mature enough to choose a good function of
delay probability, needed to map duration in probability with a mean on
the ideal value. This investigation has been performed during an intern-
ship in the team Formal Method and Tools (FMT1) of Twente University,
Netherlands.

Summary

Based on IRTMs, we presented in this chapter an automatic and timed MBT
framework. This framework allows to assess the timed conformance of real-
time systems to their model, providing several parameters to configure test
sessions.

We detailed the different steps composing our TMBT framework applied
to abstract real-time systems. We presented what we mean by high-level re-
quirements and how it is used in the construction step. Thereafter, the usual
MBT steps were detailed and we explained our algorithm to compare two out-
put traces containing logically timestamped actions. Next, we presented our
construction rules and their compositional construction of IRTMs, giving
examples of Menv and Msys model constructions. Moreover, we dealt with
algorithms to generate a suite of relevant input traces and presented existing
tools or implemented approaches to compute musically relevant traces. Fi-
nally, we introduced stochastic values in models to construct relevant traces
during simulations.

Through these MBT steps, the framework parameters allow to: delimit
test sessions, chose the generation algorithm, and, fix the tolerance in com-
parison. Our TMBT framework was presented in a general manner. In the
following of the manuscript, we detail more concrete steps by applying the
testing procedure to a case study.

1http://fmt.cs.utwente.nl

http://fmt.cs.utwente.nl


Chapter 5
Case Study: Application to the
Interactive Music System Antescofo

Our TMBT framework is based on high-level requirements to assess the timed
conformance of real-time systems. Score-based IMS are real-time systems
and must follow the temporal requirements of their mixed-score given in in-
put before a performance. This chapter aims at assessing, with our TMBT
framework described in Chapter 4, a state-of-the art score-based IMS con-
formance wrt. a given mixed-score.

More precisely, given our TMBT framework and a mixed-score, we want
to assess the IMS Antescofo conformance to the mixed-score temporal re-
quirements.

Antescofo stands for anticipatory score following and is an electronic mu-
sician which plays music according to the timed scenario specified by the
mixed score with respect to a human live performance. Incorporate testing
in the development of such a system is a challenge for several reasons:

• As depicted in Section 2.1, in general and despite strong real-time
requirements, testing methods are not well developed for such music
systems yet;

• Antescofo is a real-time system and is involved in live music perfor-
mance. Its time reliability is a critical point to prevent from misbe-
haviors during performances and concerts.

107
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• Antescofo is in a constant evolution, because it is used in live perfor-
mances by famous composers, pushing forward the system to meet new
constraints and requirements.

As a consequence, the need of relevant and trustable testing framework,
especially for regression testing, appeared soon as essential for the well de-
velopment of Antescofo.

This chapter first introduces the score-based IMS Antescofo in Section 5.1.
Then, in Section 5.2, we exhibit our rules for model constructions based on
a fragment of the Dedicated Specific Language (DSL) of Antescofo. This
section presents the concrete implementation of our TMBT framework, such
as the adapters to stimulate the IMS, the models constructed from an An-
tescofo mixed-score toy example and the verdict outputs. Finally, in order
to evaluate the framework, we apply our testing procedure to Antescofo with
several parameters for a benchmark containing both real mixed-scores and
small mixed-scores in order to test the system. We report the results of our
experiments in Section 5.3.

5.1 Antescofo

Along our work, our TMBT framework was applied to a state-of-the-art In-
teractive Music System. This IMS, Antescofo [46], is a score-based IMS
taking a timed requirement, called a mixed-score, in input for performing a
musical piece jointly with human musicians. More precisely, during perfor-
mance Antescofo listens to a musician playing the instrumental part of the
mixed score. Meanwhile, the system detects the musician’s position in the
given mixed score and the musician’s instantaneous pace (its tempo, in beat
per minute). Moreover, Antescofo plays in response the electronic part of
the mixed score. Finally, this can be seen as an electronic accompaniment.

This section describes the Implementation Under Test (IUT) used in this
case study. The specific architecture of Antescofo is first detailed in Sec-
tion 5.1.1. Then, Section 5.1.2 presents the IMS Domain Specific Language
(DSL) used to specify expressive mixed-score.

5.1.1 Architecture

Antescofo was created in 2007, it first proposed to connect a listening machine
with a domain specific language to express mixed-score, at composition time,
and to implement it, at performance time. It was developed then by the



5.1. ANTESCOFO 109

INRIA team MuTant in the RepMus team of the Institute of Research and
Coordination Acoustic/Music (IRCAM).

In this section, we just briefly overview Antescofo and its musical back-
ground. For more details, the reader can refer to [46], the Antescofo docu-
mentation1, or follow the team’s website link2.

musicians

mixed score

Listening
Machine

Reactive
Engine

audio
software

audio or
MIDI stream

tempo

pos

messages

Figure 5.1: Architecture of Antescofo

The architecture of Antescofo is roughly depicted in Figure 5.1 and con-
sists in two main modules: a Listening Machine (LM) and a Reactive Engine
(RE). First, the LM is in charge of decoding the audio or midi input stream
incoming from musicians and must infer in real-time:
(i) the musician’s position in the given mixed score, and
(ii) the estimated musician’s pace (or tempo in beats per minute).

These values are sent to the RE which schedules the electronic actions to
be played, as required in a mixed score. For Antescofo, the actions are mes-
sages emitted on time to an audio environment. Hence, using external audio
applications, sound emission/generation/transformation can be done. More-
over, Antescofo can send messages using standard network communication
protocols, hence, any systems accepting UDP messages can be targeted by
Antescofo messages.

Antescofo workflow. Usually, Antescofo workflow consists first in writing
a mixed-score in the Antescofo’s DSL and giving it to the system as argu-
ment. From here, Antescofo’s LM is active and waits for audio signal or midi
input stream to detect whether one of the first specified events is played.
The listening machine [35] implements a semi-Markov model to manage the
position estimation according to the advancement of time and events’ obser-
vations [37]. This probabilistic model is combined with a tempo extraction

1http://support.ircam.fr/docs/Antescofo/manuals/
2http://repmus.ircam.fr/antescofo

http://support.ircam.fr/docs/Antescofo/manuals/
http://repmus.ircam.fr/antescofo
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algorithm, based on Large’s work [66], to smoothy estimate the tempo vari-
ations. It gives the software a fair and stable recognition module to follow
and anticipate musicians during performance. It also eases the RE reactions,
implementing in real-time electronic parts from a reliable LM sequence of
outputs.

Figure 5.2: Ascograph: improving Antescofo mixed score composition and visualization.

The mixed-score composition and visualization are improved by a graph-
ical extension of Antescofo called Ascograph [33]: Ascograph deals with a
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visual representation of the multi-timed mixed-score and its dynamic vari-
ations during performance. Recently, an extension work [30] allows several
views on Ascograph to focus on the representation of these dynamic variations
which are untimed and do not follow a standard score timeline. An exam-
ple can be found in Figure 5.2 showing on a score from Philippe Manoury.
Briefly, the representation is composed of:

• a standard piano roll, on the middle, depicting the loaded mixed-
score events. The piano roll representation displays events as rect-
angles where y-positions correspond to pitches, x-positions correspond
to score positions and lengths correspond to durations. During per-
formance, a vertical line informs about the current position of the
musician for Antescofo (the last detected event),

• the Antescofo’s DSL mixed-score editor, on the right. Parts of mixed-
score can be dynamically loaded, modified and sent to Antescofo, per-
mitting untimed actions launching, or Antescofo command emissions
during a performance, achieving live-coding [90],

• the electronic actions to trigger are depicted on the bottom. It is the
visual representation of the electronic parts, providing code snippets
to create Antescofo actions.

To enable an easy and quick manipulation of the software and its sound
output, Antescofo was first developed as a MAX-MSP [78] or PureData [79]
object to be embedded in a patch. Patches are visual programs making
accessible the specification of complex control and audio-processing graphs
to not-expert users. Patches also simplifies drastically the connection with
other softwares that are used in sophisticated set-up. The real-time system’s
behavior can easily be monitored thanks to the visual representation of these
languages. As an example, the reference patch of Antescofo in MAX-MSP is
depicted in Figure 5.3. The reference patch is built as an example for general
uses of the Antescofo object in a patch and serves also as a documentation.
This view explains the usual utilization of Antescofo in MAX-MSP by loading
a score (top-left panel), starting Antescofo (the square below this panel)
and launching the recognition on a pre-recorded performance or on a live
audio stream (right side panel). During performance, panels on the bottom
of the figure (connected to the outputs from the patch called Antescofo∼),
depict Antescofo current internal variables to track and monitor the system
behaviors.
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Figure 5.3: Antescofo reference MAX-MSP patch

Reactive Engine

The RE is the deterministic part of Antescofo and must implement in real-
time the mixed-score given in input before the performance. By determinis-
tic, we mean that for a same recognition trace detected by the LM, the timed
reactions of the RE should be identical. However, the timed inputs of a mu-
sician performer is non-deterministic and interpretations, added to the ideal
performance specified in the mixed score, differ for each performance. We
mean by musician interpretations, the timing value variations/fluctuations
of a performance from the ideal values.

The RE is an interpreter of the DSL mixed-score of Antescofo. The
mixed-score, viewed as a program, is evaluated in real-time and is a sequence
of timed computations that are synchronized with the events specified in the
mixed-score and the tempo of the human performer. The challenge of the
RE is to deterministically react from any input event sequences detected by
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Figure 5.4: Architecture of the Antescofo reactive engine

the LM. To meet this challenge, the RE contains several components.

During performance and as depicted in Figure 5.4, the RE can receive
input events, from the external environment, such as LM notifications of the
musician position and tempo, or user’s external commands. These inputs
are variable updates managed by the internal environment. In the IMS,
any variables are stored with their timed history if needed for latter access.
Timing variables, which are clocks for specifying delays and durations in the
mixed-score, are inserted in a priority queue gathering all the pending delay
values. The time scheduler, according to the variables’ priority, computes the
minimum values in the queue in order to wait for the minimum duration until
the next computation. Computations, launched by an event update (event-
triggered) or a timing variable expiration (time-triggered), provoke other
variable updates or timing dispatches in respect to the musician performance
and the interpretation of the mixed score. Finally, an Antescofo run is a
sequence of logical instants, defined by three possible inputs:

• an event detection (by the LM),
• a variable update (or a command) and
• a delay expiration.

Logical instants contain a finite sequence of instructions and are logically
timestamped with the date of its beginning in physical time and an index
number in order to differ logical instants with a same timestamp.
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5.1.2 Antescofo Domain Specific Language

Mixed music pieces interleave musician and electronic timed behaviors. In
this aim, a mixed-score specifies two parts:

- input events, expected from musicians, with their ideal durations, and

- output actions, the sequences of audio computations in reaction to the
input events.

Attributes, denoted with @-words in the DSL, are used to add information
to events and actions. In particular, we consider three kinds of attribute:
@name, defines the label of an item; @sync, assigns the synchronization
strategy to an action; and @err, assigns the error management strategy to
an action.

By default, actions immediately following an event are triggered syn-
chronously with the occurrence of this event. The other actions are trig-
gered by the performance of their previous action after the expiration of an
optional delay. This basic behavior, is modulated by the synchronization
strategies defined with the attribute @sync which can have two values:

• @loose, following the default case, actions are triggered by the perfor-
mance of their previous actions. The synchronization with musicians is
managed only via delay fluctuations according to the detected tempo.

• @tight, instead of starting a delay after a previous action, the delay
must be translated into an equivalent delay elapsing from the nearest
event in the past. Here, equivalent means that the new delay is ad-
justed to achieve the same execution date if the event occurs at its
specified date.

To introduce the DSL, we first present a simple example to briefly explain
the syntax and ideas behind this language. Antescofo’s DSL is a sequential
textual language representing a mixed-score which contains temporal expres-
sions.

1 NOTE C4 1 @name e1
2 a1 @name start
3 group @tight @name g1
4 {
5 1 a2 @name end
6 }
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7

8 CHORD (D4 F4) 1 @name e2

Example 5.1.28: The code above is an Antescofo mixed-score containing
two events (the note e1 (line 1) and the chord e2 (line 8)) and three actions
(two atomics actions a1 (line 2) and a2 (line 5) and one compound action,
the group g1 (line 3)).

The events are defined with a type (note or chord), followed by one or
a list of pitches (a C4 for the note e1 and a D4 together with a F4 for the
chord e2). The next real specifies the event duration, being of 1 beat in the
example. Finally, the attribute @name sets a precise label for these events.

The actions’ specification begins with an optional value for their delay,
it is 0 for a1 and g1 (0 is the value when the delay is not specified), and 1
beat for a2. Then, the type of action is detailed, by default atomic actions
(a1 and a2), and group for g1. Similarly to events, the attribute @name
sets the actions’ labels. An attribute @tight is seen for g1, specifying its
synchronization strategy.

According to the synchronization attributes, the action a1 is related to
the event e1 and because no delay is specified for a1, the action is performed
at the detection of e1 (resulting in a message emission). Then, the next
action (the group g1) has a synchronization @tight and should be triggered
according to the occurrence of e1. Similarly to a1, g1 is performed at the
detection of e1 because no delay is specified (resulting in the management of
its sub-sequence of actions). Finally, a2, which inherits the attributes from
g1, is related to e2. Indeed after 1 beat from g1, we are exactly at the onset
of e2 in respect to the mixed-score timeline. After translating the delay
according to e2, the action a2 is performed at the detection of e2.

Hence the sequence, resulted to a run with the ideal input is the following:

e1 · a1 · (g1) · 1s · e2 · a2

where the tempo is 60bpm and (g1) depicts the activation of the group g1 not
observed in the run since it is an internal system behavior. As expected, the
actions a1 and g1 are performed simultaneously to the detection of e1. Then,
after the duration of e1 in physical time (lasting 1 second with 60bpm) the
event e2 is detected and a2 is performed. ♦
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Antescofo Input Events

Antescofo DSL was created to help the composition of mixed-music. One
of its main goal is to provide the musical expressivity allowed by the classi-
cal western notation. Hence, the list of events defined to specify musicians’
events, highlighted in red in the example, contains simple NOTE and CHORD
(set of simultaneous NOTE), but also TRILL and MULTI, for specifying re-
spectively the classical trill (tremolo) or a continuous sequence of NOTE (e.g.
glissandi). An event is defined by three attributes:

1. a set of pitches, being the high of the NOTEs to detect,

2. a duration (a timing variable), and,

3. a label (we suppose for testing a fully labeled score).

Antescofo Output Actions

The list of possible system reactions specified in the DSL contains atomic or
compound actions. The former is an elementary action (performed instan-
taneously after an optional delay) and the latter an encompassed sequence
of actions. An action is defined by four attributes:

1. a label,

2. a delay (which is 0 if not explicitly defined),

3. a synchronization strategy @sync (inherited from enclosing actions or
top-level if not defined), and,

4. an error management strategy @err (also inherited).

Notice that we speak of durations for events, because they are seen as
pairs of onset with an amount of time until the next event’s onset. However,
we use the term delays for actions, because we consider the amount of time
we have to wait for performing the action.

For the following of this section, we only list the actions that are relevant
for our testing point of view.

Atomic actions. There are three atomic actions:

1. the assignment of a variable,

2. the emission of a message to an audio application, and,
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3. the emission of a kill signal for aborting active compound actions.

The performance of an atomic action results on their instantaneous firing,
i.e. the assignment, the emission and the termination of actions respectively.
Notice that, because they are atomic, we cannot kill such actions which are
instantaneous, in the sense of synchronous languages such as Lustre [31] or
Esterel [13].

Group of actions. As seen previously in the example, groups are com-
pound actions, containing a sub-sequence of locally dependent actions. Gr-
oups are used to create musical phrases, and in a sub-sequence, the actions
share the same set of attributes by default. When a group is fired, its sub-
sequence of actions is performed concurrently. A group is active from its
firing to its termination, either by the performance of its last action or by
the reception of a kill signal by itself or one of its ancestor.

For instance, let us consider this following code fragment:

1 NOTE C4 1 @name e1
2 group @tight @name ga
3 {
4 1 a2 @name a2
5 1 kill gb @name kgb
6 }
7 0.5 group @name gb
8 {
9 1 a3 @name a3

10 1 kill ga @name kga
11 }

The sequence resulted from a run performed following the ideal input se-
quence with a tempo of 60bpm is:

e1 · (ga) · 0.5s · (gb) · 0.5s · a2 · 0.5s · a3 · 0.5s · (kgb)

In the example, the group gb is fired in concurrence with ga previously fired.
A group can thus be seen as a kind of thread launched at its activation.
Notice that when a kill signal is fired but none of its targeted action is
active, it has no effect and is simply discarded.
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Loops. In this work, we only consider one more compound action: the
loop3. A loop performs a sub-sequence of actions iterated at every P du-
ration, where P is the period, i.e. the inverse of the frequency. A loop
terminates by the end of the mixed-score interpretation or by the reception
of a kill signal by itself or one of its ancestor.

1 NOTE C4 1 @name e1
2 loop 1 @tight @name l1
3 {
4 a1 @name a1
5 1 a2 @name a2
6 1 a3 @name a3
7 }
8 2.9 kill l1 @name kl1

The run of an ideal input sequence on the mixed-score above is:

e1 · a1 · 1s · a1 · a2 · 1s · a1 · a2 · a3 · 0.9s · (kl1)

with (kl1) the internal kill signal terminating all the instances of the loop
action l1. Notice that actions can occur simultaneously, in particular, two
instances of the same compound action may overlap. However, the ordering
of actions is primordial in music, e.g. a1 can start the communication and
an can send information through the channel opened by a1.

Hence, the order of the actions considered in the system is the one of
the score, in other word, the action’s line-code rank. In case of instances of
a same compound action, the first created instance has the higher priority.
This is enough to entail a strict ordering of actions and, hence, to ensure the
determinism.

Sync-Err Attributes

How should the system react when an input is not as expected ?

We can see an unexpected input because:
• its onset was not expected at its detection date (i.e. the tempo is not

ideal) and the previous event is too long or too short, or
• a previous event was expected but missed during performance.

3Notice that such loops are not primitive constructions and can be evaluated using a
combination of loop and termination command.
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These two cases concern the synchronization and the error management
strategies of the system respectively. Thereafter, we will present two strate-
gies for each case and shows their combined effect on an example with non
ideal input traces.

Synchronization. The exclusive attributes @loose and @tight specify the
synchronization of an action. The former, timely synchronizes the action
according to the musician’s detected tempo only. It results on smooth vari-
ations of delay even if a big shift is seen during performance. The latter
synchronizes on events and has more impact on delay variations.

Error management. The two exclusive attributes to control the error
management are @local and @global. The first, just does not activate the
actions related to a missed event, the other does. Notice that the activation
of actions related to a missed event is performed when this event is detected
as missed, that is to say, when a next event is detected instead.

1 NOTE D5# 1 @name e1
2 group @sync @err
3 {
4 a1
5 0.5 a2
6 0.5 a3
7 0.5 a4
8 }
9

10 NOTE A4 1 @name e2
11 group @sync @err
12 {
13 b1
14 0.5 b2
15 }

Example 5.1.29: We depict through examples all the behaviors of two
groups for the four combinations of the attributes listed previously. In order
to clearly present these examples, we describe a run of the above DSL code
in a visual representation as shown in Figure 5.5 for the ideal case.



120 CHAPTER 5. APPLICATION TO AN IMS

Figure 5.5: An ideal run.

The input events are in the western notation style, their ideal times-
tamps being depicted with blue dashed lines, terminated by the correspond-
ing event’s symbol or “missed”. The actions are represented as boxes (that
can contain a sequence of simultaneous actions). The two groups are rep-
resented horizontally, the top line for the group g1 and bottom line for the
group g2. Finally, the Antescofo’s event-trigger reactions are marked using

Figure 5.6: A run with e1 missing.
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Figure 5.7: A run with e2 early.

stars, colored in red when the missed detection launches some actions, and
time-triggers are denoted with gray arrays, depicted in red if the delay is not
ideal.

As expected for the ideal case, after the detection of e1 the four actions
of the first group are triggered 0.5 beat, says second for a tempo of 60bpm,
after its previous action. The same behavior is seen for the two actions of
the second group with e2. Notice that no distinction is seen on the ideal case
and for all the attribute combinations.

However, as depicted in Figure 5.6, if the first event is missed, a distinc-
tion is seen according to the error management attribute, local or global, of
the actions. In the local case, the actions a1 and a2 are skipped because of
the miss of e1. This is depicted by red crosses on the action boxes. How-
ever, the actions a3 and a4 are not affected in any cases and are played in
the ideal mode because of the good detection of e2. In the global case, the
actions a1 and a2 are played when e1 is detected as missing. It results on
the simultaneous emission of a1, a2 and a3.

For tempo variations, an event can be detected earlier than its ideal spec-
ification. Depicted in Figure 5.7, if such a case happens, the synchronization
attributes specify the reaction of the system. In case of loose attributes, the
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delays are ideal until the early detection of e2. At this point, the arrays
become red because the estimated tempo is higher. Indeed, an earlier event
implies a tempo acceleration. Thus, the time to wait before a3 is shorter
than the ideal duration. This acceleration has an effect on the delays of
the actions a4 and b2 too. In case of tight attributes, the action a3 is not
time-triggered and is also sent at the detection of e2 simultaneously with b1.
The action delays are equally shorter for actions a2 and b2, hence, they are
sent simultaneously.

Hence, the synchronization strategies played an important role in the
coherence of the electronic parts and are difficult to deduce for non trivial
input performances. As an example here, it results in playing simultaneously
a3 and a4 with b1 and b2 or not.

Figure 5.8: A run with e2 late.

Finally, Figure 5.8 depicts the late occurrence of event. We can deduce
the same conclusion as the earlier case, but here the action a3 is sent before
the event e2 or at the same time. The delays waited for a4 and b2 become
longer than the ideal duration because a later event decreases the estimated
tempo. ♦
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5.2 Model-Based Testing Antescofo

Antescofo is a complex real-time system and is involved in a non-deterministic
input environment. However, the system must react to these inputs in a
strictly specified manner. Hence, lots of errors are possible.

We applied our TMBT framework to Antescofo, in order to ensure a good
execution of the IMS and prevent from a misbehavior during concerts.

To do such formal tests, we use as the requirements in Chapter 4, the
mixed-score required by Antescofo, which timely specifies the musicians input
events traces and the related Antescofo output reactions. In this chapter:

• the abstract syntax of Antescofo requirements and its construction
rules are presented in Section 5.2.1,

• then, we depict in Section 5.2.2 some IRTMs constructed by the pre-
vious rules, and,

• finally, the implemented steps of our test framework, are detailed in
Section 5.2.3.

We recall and depict in Figure 5.9 the overview of our implemented test-
ing procedures. On the left, the online approach is detailed, aside of its
offline counterpart depicted on the right. Both of these testing approaches
start from an Antescofo mixed-score and construct automatically the corre-
sponding IRTM (1):

- Then, on the right, the offline approach generates a set of input traces
σin from the model and/or the mixed-score information (2). Once some
input traces have been generated, the model is used to compute the
corresponding reference traces σref by simulation (3). Then, the input
traces are sent to Antescofo (4) in order to deduce the monitored traces
σmoni. Finally, the reference traces are compared to the monitored ones
resulting in a verdict (5).

- On the left, the online approach uses the Virtual Machine (VM) to
execute the model. Input test data is generated on the fly using an
adapter (Adt). The generated inputs are also sent to Antescofo, as the
input of artificial musicians. The monitored outputs of the system are
compared online to the reference trace (5), event by event. An error
is reported if some Antescofo reactions are not expected or missed in
respect to the model.
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Mixed score + Performance info.

Model
σin

σref

Antescofo

σmoni

(5)

Verdict

(1) (2)

(3) (4)

V
M

AdtAntescofo

(5)

Verdict

ee

aa′

Figure 5.9: Two implementations of score-based IMS testing procedures: on
the left online method - on the right offline method.

5.2.1 Model Construction

Compiling mixed scores into IRTMs has been implemented as a command
line tool, called automata, written in C++ on the top of the original An-
tescofo’s parser. In order to implement the construction rules accordingly,
the abstract syntax given as input of our TMBT framework is the result of the
system’s parser on the subset of Antescofo syntax presented in Section 5.1.

Abstract Syntax

The abstract syntax is over the alphabets Evt and Act defining the set of
event and action symbols respectively. In order to express synchronization,
error management strategies and loops in the model, we extend the abstract
syntax of Section 4.1.1 with Antescofo attributes given the syntax depicted
in Figure 5.10.
A mixed score is a finite sequence of events of the form evt(e, d, as) with
e ∈ Evt , d ∈ R≥0 the duration of e, and as the top-level group triggered
by e. A duration can be in performance time (b) or physical time (s). An
action can be of the form:

. act(d, a, al) with a ∈ Act an atomic action,

. act(d, as, al), with as a finite sequence of actions, called a group, or

. act(d, s, al, p) where p ∈ R>0 is the period duration, in performance or
physical time, of the loop.
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score ::= ε | event score
event ::= evt(e, dur, seq) e ∈ Evt
seq ::= ε | action seq
action ::= act(dur, a, al) | act(dur, seq, al) | act(dur, seq, al, dur) a ∈ Act
dur ::= d timeUnit d ∈ R
timeUnit ::= s | b
al ::= sync? | err?
sync ::= loose | tight
err ::= local | global

Figure 5.10: Grammar of the abstract syntax for the tested fragment of
Antescofo DSL.

For all the cases, d ∈ R≥0 is the delay (in performance or physical time) to
wait for before performing the action, and al is a list of attributes containing
the synchronization strategy sync and the error management strategy err
information. The default values of these attributes are [loose, global].

Construction Rules

The construction rules are based on the abstract syntax defined in Fig-
ure 5.10. The construction consists in a single traversal of the AST which
returns a model composed of: Menv, a test environment as described in
Section 4.3.1 andMsys, the Antescofo specification.

The rule `all constructs the FSM associated to a mixed score according
to two cases:

: ∅ `all A∅

: ms `envMenv : ms `proxy P : ms `sys A
: ms `all Menv‖P‖A

If the score is empty, the rule `all returns an empty FSM A∅, containing an
empty set of locations. Otherwise, it applies to the mixed-score ms three
other rules:

`env for constructing the test environment modelMenv,

`proxy to construct the proxy P, the interface betweenMenv and A,

`sys in charge of creating A, the specification of Antescofo.
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whereMenv, P andA have the type 〈1, 0〉. Moreover, we letM =Menv‖Msys
withMsys = P‖A, the complete modelM is a parallelization of the environ-
mentMenv and Antescofo modelMsys which is itself a parallel composition
of the proxy P and A.

Proxy FSM. A FSM of the form P = 〈Evt ,Sig ,LP , `P0 ,∆P〉, called proxy
is in charge of receiving detected events and signaling to the other FSMs the
missing events, depicted using signals of the form e. Here, we define an error
as a missing event ei, detected at the arrival of a next event ei+k, with k > 0.
The proxy FSM approach is modular and permits to replace this definition
of error with alternative ones, without changing the rest of the FSM. We
present here a construction of P for nerr = 1:

: evt(e, d, as) `pevt0 P
〈1,2〉
0 e : ms ′ `proxy1 P

〈2,0〉

: evt(e, d, as)::ms ′ `proxy P〈1,2〉0 + P〈2,0〉

ei−1 : evt(ei, d, as) `pevt1 P
〈2,2〉
1 ei : ms ′ `proxy1 P

〈2,0〉

ei−1 : evt(ei, d, as)::ms ′ `proxy1 P
〈2,2〉
1 + P〈2,0〉

e : ∅ `proxy1 F
〈2,0〉

The rule `pevt0 initializes the FSM P, by waiting for the first event evt(e, d, as).
The rule `pevt1 treats each following event ei of the score. The FSMs con-
structed by these rules are depicted in Figure 5.11. Provider and seeker 1
correspond to the case when this event ei is received after the previous event
ei−1, while provider and seeker 2 correspond to the case when ei is received
whereas ei−1 was not received. In the latter case, the signal ei−1 is emitted
to notify that the last event ei−1 is missing.

In practice, we have implemented a proxy for nerr <= 7, because An-
tescofo assumes that no more than 7 events can be consecutively missed.

FSM for the score reactions. The rule `sys constructs a FSM of the form
A = 〈Evt ∪ Sig ,Act ,LA, `A0 ,∆A〉 specifying the behavior of the system in
reaction to the events of the environment, i.e. the automatic accompaniment.
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evt(e, d, as) `pevt0 `1

2

s1 1
e?

ei−1 : evt(ei, d, as) `pevt1
`1

2

p22

s1 1
ei?

ei? e
i−

1 !

Figure 5.11: The parts of the proxy FSM.

0, evt(e′, d′,_)::ms ′, evt(e, d, as),⊥ : as `loose,globalseq A〈2,0〉s

: evt(e′, d′,_)::ms ′ `sys A〈1,0〉

: evt(e, d, as)::evt(e′, d′,_)::ms ′ `sys (T 〈1,2〉e +A〈2,0〉s )‖A〈1,0〉

: ms ′ `sys A〈1,0〉

: evt(e, d, ε)::ms ′ `sys A〈1,0〉 : ∅ `sys F 〈1,0〉

The first case of `sys, on the top, returns a FSM associated to evt(e, d, as)
and describes the behavior of a top-level group, triggered by an event e, and
containing the sequence of actions as. This part is the sequential composition
of Te, a trigger FSM labeled by e and the FSM associated to as, constructed
by a call to the rule `loose,globalseq . This rule, presented below, treats as as
a group with attributes loose, global, which is the behavior defined for top-
groups. This part is composed in parallel with the FSMA built by a recursive
call of `sys on evt(e′, d′,_)::ms ′, the rest of the score. When the end of score
is reached, right bottom case, the final FSM is constructed by adding an
ender F 〈1,0〉 with 1 provider. Finally, the last case, on the bottom left,
passes to the next event if no action is related to e.

FSM for actions sequences. We now define the rule `alseq for building
the FSM associated to an action sequence as, under the attributes in al .
The rule will parse the sequence as and build a FSM that will send these
actions according to the strategies in al . This rule will also traverses the list
of events occurring in the score, after the event e. Indeed, synchronization
with these events is required in some strategies.
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Moreover, the event durations de and the action delays d may be in
a different time unit. We recall that Φ(d) is the evaluation function of a
duration from a relative time into physical time. This function, has no effect
if the duration is already in physical time, and uses the ideal tempo curve
fσin defined in the score for translating the durations dσin from performance
time unit.

Every call to this rule will have the form

δ,ms, evt , x : as `alseq A

where the auxiliary argument:

- δphy is an accumulator in physical time. It is the sum of the actions’
delays parsed so far in the given sequence, minus the durations of the
processed events. In other term, it is the duration between the closest
event and the action itself.

- ms is the list of events that remain to be processed, its first event being
the next event to detect, following the score,

- evt called closest event, is the last event before the action currently
parsed, i.e. the first action of as, in the timeline defined by the score,

- x is a flag whose role is explained later.

Then, we define the possible cases during the traversal of a sequence of
actions as. The base case, is when the list of actions is empty. It simply
returns an ender.

δ,ms, evt , x : ε `alseq F 〈i,0〉

where i depends on the attribute sequence al.
When the list of actions is not empty, a call to `alseq will first update

the accumulator δ by adding the delay d of the currently parsed action, and
carry on with a call to a second rule `alseq1 .

δ + Φ(d),ms, evt ,⊥ : act(d, a, al ′)::as′ `alseq1 A
δ,ms, evt ,⊥ : act(d, a, al ′)::as′ `alseq A

Note that the flag x must be ⊥ and keeps this value. The rule `alseq1 will look
for the closest event before the action currently parsed, in order to update
the third auxiliary argument.
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δ − Φ(de),ms ′, evt(d′, e′, as′e),> : as `alseq1 A
δ, evt(d′, e′, as′e)::ms ′, evt(de, e, ase), x : as `alseq1 A

if δ ≥ Φ(de).
Concretely, the rule `alseq1 is applied if the actions’ delay accumulator δ is
greater than the duration of the closest event de, i.e. if the closest event
evt(de, e, ase) finishes before the action currently parsed. Then, the third
auxiliary argument is updated to evt(d′, e′, as′e), the head of the secondary
argument, which is removed from the list and the flag, the fourth auxiliary
argument, is set to >. Moreover, the duration de of the closest event e is
subtracted from the accumulator δ to compute the rest of the delay to wait
for until the new closest event.

Otherwise, if de finishes after the action currently parsed, it means that
we have found the good closest event before this action. Then, we can process
by sending the current action. We consider three cases. The first case is for
an atomic action act(d, a, al ′), with a ∈ Act :

d, δ, e′, e, x : `aldelay A
〈n,m〉
d act(d, a, al ′) `alatom A〈m,m〉a

δ, evt(d′, e′, as′e)::ms ′, evt(de, e, ase),⊥ : as′ `alseq A〈m,0〉

δ, evt(d′, e′, as′e)::ms ′, evt(de, e, ase), x : act(d, a, al ′)::as′ `alseq1 A
〈n,m〉
d +A〈m,m〉a +A〈m,0〉

if δ < Φ(de).
In order to treat `alseq with an atomic action, we call first `aldelay to specify
the management of the delay, when d > 0, according to the attribute list al .
The FSM Ad, returned by `aldelay, is concatenated with Aa, a FSM in charge
of sending the action a. Both Ad and Aa will be defined below according to
the attribute list al . Finally, we call `alseq to iterate on the rest of the action
sequence as′ and concatenate the result to the FSM already computed. Note
that the flag is set to ⊥ in this recursive call.

The case of a compound action act(d, asa , al
′) is as follows:

d, δ, e′, e, x : `aldelay A
〈n,m〉
d

δ, evt(d′, e′, as′e)::ms ′, evt(de, e, ase),⊥ : asa `al
′

seq A〈m
′,0〉

sa

δ, evt(d′, e′, as′e)::ms ′, evt(de, e, ase),⊥ : as′ `alseq A〈m,0〉

δ, evt(d′, e′, as′e)::ms ′, evt(de, e, ase), x : act(d, asa , al
′)::as′ `alseq1 A

if δ < Φ(de),
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where A = A〈n,m〉d + (I〈m,m〉‖A〈m′,0〉sa ) +A〈m,0〉 if m ≥ m′,

and A = A〈n,m〉d + (I〈m,m〉‖I〈2,2〉 +A〈m′,0〉sa ) +A〈m,0〉 otherwise.
The only difference with the case of an atomic action is the treatment of the
sub sequence of actions itself, which is processed with a recursive call to `al ′seq,
applied to the sequence of actions asa, the content of the compound action,
and following the attributes al ′.

The two operations below the rules prevent from having more connectors
to fire than those of the parent FSM. Indeed, this parallelization allows to
send a sub-FSM according to the mode of its parent one. Hence, an erroneous
mode will launch a sub-FSM in an erroneous mode. However, a problem
arises if the parent has less connectors than the sub-FSM, therefore, we cast
the children’s providers to two connectors with I〈2,2〉 to avoid this case.

It remains to consider where the second auxiliary argument is empty,
because we have reached the end of the event list on the score. In this
case, the sequence of actions is treated with the loose strategy, whatever the
strategy specified in the score. The case of an atomic action is then:

d, δ, e, e,⊥ : `loose,errdelay A〈n,m〉d

act(d, a, al ′) `loose,erratom A〈m,m〉a δ, ε, evt ,⊥ : as′ `sync,errseq A〈m,0〉

δ, ε, evt , x : act(d, a, al ′)::as′ `sync,errseq1
A〈n,m〉d +A〈m,m〉a +A〈m,0〉

And the case of a compound action is treated similarly as above.

FSM for loops. The last case is for a loop action act(d, saa , al
′, p). We

create for each loop a signal λ ∈ Sig , called kill signal, terminating the
sub-sequences related to a loop.

d, δ, e′, e, x : `aldelay A
〈n,m〉
d p, λ : `loop 〈`,k〉A

〈m,m〉
`

λ, δ, evt(d′, e′, as′e)::ms ′, evt(de, e, ase),⊥ : asa `al
′

seq
kA〈m′,0〉sa

δ, evt(d′, e′, as′e)::ms ′, evt(de, e, ase),⊥ : as′ `alseq A〈m,0〉

δ, evt(d′, e′, as′e)::ms ′, evt(de, e, ase), x : act(d, saa , al
′, p)::as′ `seq A〈n,m〉d +A1 +A2 +A〈m,0〉

where A1 = (I〈m,m〉‖kI〈m′,m′〉 + kA〈m′,0〉sa ) if m ≥ m′,

and A1 = (I〈m,m〉‖kI〈2,2〉 + kA〈m′,0〉sa ) otherwise,

and A2 = (I〈m,m〉‖(〈`,k〉A〈m,m〉` +(〈m,`〉L‖kA〈m′,0〉sa ))).
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The rule `seq for loops follows the third construction rules (concurrent reac-
tion) described in Section 4.2.4 but for FSMs of type m. We first call `aldelay
for the management of the delay and then launch the FSM related to asa,
the content of the compound action. Then, `loop initializes a loop for each
provider in m and launches the same FSM every p duration. Each linker
〈m,`〉L merges the ith first location of a loop with a target of the next and -
transition as presented in Section 4.2.4 for provider 1. The FSM constructed
by the rule `loop is depicted in Figure 5.12 for m = 1.

d, λ : `loop
p11

`

s1 1

sk k

d

λ?

Figure 5.12: FSM constructed by `loop.

FSM for action’s delays and atomic actions. The attribute list will
determine how to manage a delay d in the call of the rule `aldelay and how to
treat an atomic action a ∈ Act in the call of the rule `alatom. We detail in
the following of the section the FSMs constructed for every combination of
attributes al .

d, δ, e′, e, x : `loose,localdelay

`1

`2 2

`′ 1
d

act(d, a, al ′) `loose,localatom

`1

`2 2

`′ 1
a

Figure 5.13: FSM managing the delay d and the atomic action a for the
attributes loose, local.

Case al = loose, local. In this case, depicted in Figure 5.13, the FSM built
by `delay waits for the delay d when in provider 1 (normal mode) and the
FSM of `atom sends the action a, with no care in event detections. In the
error mode, provider 2, both `delay and `atom do nothing, the delay and
action are skipped.
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d, δ, e′, e,> : `loose,globaldelay

if δ = 0

`1

`2

`′ 1

`′ 2

d

e?

e?

otherwise

`1

`2

`′ 1

`′ 2

`i

d

e?

δ

e?

d, δ, e′, e,⊥ : `loose,globaldelay

`1

`2 2

`′ 1
d

act(d, a, al ′) `loose,globalatom

`1

`2

`′ 1
a

`′ 2
a

Figure 5.14: FSMs managing the delay d and the atomic action a for the
attributes loose, global.

Case al = loose, global. Figure 5.14 depicts the FSM constructed by `delay
and `atom for the combination of attributes loose and global, with different
cases according to the flag and the value of the accumulator δ.

On the left part of the Figure 5.14, the FSM waits for d time units in
normal mode (provider 1) and does not wait in error mode (provider 2). On
the top right part, the expected closest event before the current action is
detected, and causes a transition from the error mode into the normal mode.
The duration δ is the delay between e and the action, computed in the
accumulator of `seq1 . For the treatment of an atomic action (on the bottom
and right part), the action is sent into the normal mode. However, for the
error mode the emission depends on its proper attribute (al′), depicted with
the notation a, it is sent for the attribute global and not otherwise.

Case al = tight,_. The case of the attribute tight is depicted in Fig-
ure 5.15 for the rule `delay. In the first case on the left, when the flag is ⊥,
the FSM waits, when in normal mode – provider 1, for the delay d before the
current action. Recall that the third auxiliary argument e′ is the event, next
to the closest event e, the fourth auxiliary argument of rules `seq. If this
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d, δ, e′, e,⊥ : `tight,∗delay

`1

`′e3 3

`′e4 4

`2 2

`′ 1
d

e ′?

e′
?

if δ > 0
d, δ, e′, e,> : `tight,∗delay

`1

`2

`i

3

`′e 3

`′e 4

`′

4

2

`′ 1
e?

e?

e?

e?

δ

e ′?

e ′?

d, 0, e′, e,> : `tight,∗delay

`1

`2

`′

3

1

`′

4

2

e?

e?

e?

e?

Figure 5.15: FSM managing the delay for the attribute tight.

event e′ arrives earlier than expected, i.e. before d, then the FSM switches
from normal mode (provider 1) to another mode called early mode (provider
3). If e′ is notified as missing (signal e′) before e′ was expected, then the
FSM switches from normal mode (provider 1) to a fourth mode called early
error mode (provider 4). The provider 2 corresponds to the error mode, as
above.

In the second case (on the middle), when the flag is >, the FSM synchro-
nizes the current action a to the closest event e, i.e. it waits first for the
event e, transition from the provider 1 – normal mode, and then waits for δ,
the delay, computed by `seq1 , between e and the current action. If, instead
of receiving e, the FSM receives a notification that e is missing (signal e)
then it moves to the error mode (provider 2). Moreover, if the next event e′

arrives (resp. is detected as missing) earlier than expected, then there is a
move to the early mode – provider 3 (resp. the early error mode – provider
4).

In the third case on the right, the delay δ is null, hence it is just skipped.

Note that the composition of such FSMs with 4 providers and 4 seekers
is managed properly by the above rules, using appropriate idlers I〈m,m〉 and
enders F 〈m,0〉, with m = 2 or 4, for a correct type inference.
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act(d, a, al ′) `tight,localatom

`1

`2 2

`e3 3

`e4 4

`′ 1
a

act(d, a, al ′) `tight,globalatom

`1

`2

`e3

`e4

`′ 1
a

`′ 2
a

`′e 3
a

`′e 4
a

Figure 5.16: FSMs managing atomic action for the attributes tight, local (left)
and tight, global (right).

Case al = tight, local. The case of the combination of the attributes tight
and local for the rule `atom is depicted in Figure 5.16 (left). The local strategy
simply skips the action a when in early, early error or error modes (provider
3, 4, 2 respectively).

Case al = tight, global. The case of the combination of the tight and global
attributes is depicted in Figure 5.15 for the rule `delay and in Figure 5.16 for
the rule `atom.

The only difference with the case tight and local is for the error mode
and the early detection of next events. If the second happens, all the not
yet handled actions are sent directly, until this next event, and not skipped
as in the previous case.

5.2.2 Antescofo Models

Model representations are an effective approach to clearly depict system
behaviors. We provided in our framework several model formats including:
a byte-code listing, a graphical representation of IRTMs using the graphviz
tool, a Uppaal network of Timed Automata (.xta), and, a Uppaal model with
its graphical extension (.ugi).

We present in this section some models returned by our framework after
the application of the construction rules in Section 5.2.2 to the example
described in Section 5.1, recalled below.
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1 NOTE D5# 1 @name e1
2 group @sync @err
3 {
4 a1
5 0.5 a2
6 0.5 a3
7 0.5 a4
8 }
9

10 NOTE A4 1 @name e2
11 group @sync @err
12 {
13 b1
14 0.5 b2
15 }

IRTM representation. We depict the byte-code listing of the example
for the attributes loose, local in the Appendices A. Its corresponding graphviz
model is depicted in Figure 5.17 and allows a better view of the model.

Figure 5.17: Graphviz representation of the IRTM for attributes loose, local.

Uppaal TA. In case of Uppaal representations, the model corresponding to
the example for the attributes tight, global is depicted Figures 5.18 and 5.19.
The Uppaal representation may imply a coordinate computation of Uppaal
model items during compilation to see TAmodels in a human-understandable
fashion. It greatly improved the validation of our whole models by the de-
velopers of Antescofo.

Figures 5.18 depicts a single tight global group in Uppaal. Normal or error
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Figure 5.18: A Uppaal model of the example for attributes tight, global.

modes and the possible early modes are easily understandable. Simulation
of the whole network is depicted in Figure 5.19, checking if the model is well
formed.

Figure 5.19: A Uppaal simulation view with the network for attributes tight,
global.

5.2.3 Applying Test Framework

Now that we can construct automatically a IRTM or its corresponding Uppaal
network, the other steps of our TMBT framework can be presented.

Given a model M constructed with the construction rules presented in
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Section 5.2.1, this section details the implementation of our TMBT frame-
work in oder to apply the testing procedure to the score-based IMS Antescofo.
We implemented the two offline and online approaches in our framework,
both the approaches include the preliminary phase of the compilation from
mixed-scores into IRTM (Section 5.2.1). We have developed testing solutions
based on existing tools, but also developed our own tools, better suited to
our case study.

Compilation of Model. Compiling mixed scores into IRTMs has been
implemented as a command line tool, written in C++ on the top of the
original Antescofo’s parser. The parsing produces an Abstract Syntax Tree
which is traversed using a visitor pattern in order to build the IRTM following
the approach presented in Section 4.2. Several options are offered for the
construction of IRTMs related to the environment Menv. In particular to
fix the values of nerr and κ from the Section 4.2. The most general case,
any note can be missed, results in a model Menv with a quadratic number
(in score’s size) of transitions and an exponential number of possible input
traces. The explosion can be controlled by choosing appropriate hypotheses
on the environmentMenv. The software has been newly designed to follow
the formal specifications of the construction rules presented in Section 5.2.2.

Offline Testing Approach

Mixed score + Performance info.

Model
σin

σref

Antescofo

σmoni

(5)

Verdict

(1) (2)

(3) (4)

Figure 5.20: Offline Score-based IMS testing procedures.

Figure 5.20 outlines the implementation of our TMBT framework with
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an offline generation of input traces. This workflow, following the principles
presented in Section 4.1, proceeds in several steps described below.

The generation, simulation and comparison steps have been already pre-
sented in the manuscript. More precisely, once the modelM is constructed:

• We generate a set of input trace Tin following the generation step,
presented in Section 4.1.3 and using one of the algorithms detailed in
Section 4.3.

We have considered a third alternative for the generation of test input
traces, based on an audio recording. The developers of the IMS An-
tescofo use to work with sound files in order e.g. to analyse a specific
performance that causes errors. Such sound files can be translated
into input traces simply by marking the timestamps of their event’s
onsets. We can do that manually or with a software, e.g. Antescofo
itself, which can trace the events triggered when the listening machine
detects them from the audio file.

• We follow the simulation step presented in Section 4.1.4. Hence, the
command tool Verifyta or CoVer is used to simulate a Uppaal network,
and the VM is used to simulate IRTMs.

• Comparison is performed following the algorithm in Section 4.1.6 for
offline approaches.

Translation into Uppaal Model

In a first step, after the construction of the IRTMsMenv andMsys from the
given mixed score, using the techniques and tools presented in Sections 5.2.2,
these IRTMs are translated into TA networks, respectivelyM′env andM′sys,
as described in Section 3.2. Consequently, this approach works under the
restrictions R1 − R3 needed in Section 3.2.

A problem appears for the IRTMs obtained from the compilation of the
Antescofo DSL mixed scores. Indeed, the generated models might execute
the rule (deadlock) when simulated using the alternative semantics presented
in Section 3.2. This problem can be solved with a IRTM transformation
procedure which roughly works as follows.

We dissociate the communications betweenM′env and P ′, the test envi-
ronment and the proxy models, and between P ′ and the rest of the model
M′sys. We introduce for this purpose a new and fresh signal sei ∈ Sig for
each ei ∈ Evt , signaling the detection of the event ei. We rename the signals
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ei into sei because it is an error detection of ei. After this transformation,
all the symbols received in the IRTM, with the exception forM′env and P ′,
are in Sig . Moreover, the proxy is modified in order to echo the reception
of an event ei+1 that causes the emission of an error signal ei. The echo
has the form of a signal sei+1 emitted right after ei. This is illustrated in
Figure 5.21 for a proxy constructed with nerr = 2.

`0 `1 `2 `3 `4 `5 `6

`1

`2 `3

e1? e2? e3?se1 ! se2 ! se3 !

e2? se1 !

e3?
se1 !

s
e
2 !

e 3
?

Figure 5.21: Proxy Uppaal TA transformed to prevent from (deadlock).

Execution of Input Trace Set to Antescofo

Antescofo Standalone

Input
trace σin

Internal
adapter

Listening
Machine

Reactive
Engine

〈a, t, p〉

tempo

x

pos.

x σmoni

σref

compare

Figure 5.22: Testing the reactive engine.

We implemented several test scenarios for executing the system An-
tescofo.

1) Reactive Engine Testing. The first test scenario, depicted in Fig-
ure 5.22, is performed with a standalone version of Antescofo equipped with
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an internal test adapter module. The adapter iteratively reads elements
〈ai, ti, pi〉 of σin interpreted as a recognition trace in a file. The duration
dσini = ti − ti−1 of the event ei, in performance time, is converted into physi-
cal time by:

dphy
i =

dσini .60

pi+1
(5.1)

Then, the adapter waits for dphy
i seconds before sending ei+1 and pi+1 to

the RE. More precisely, it does not physically wait, but instead notifies a
virtual clock in the RE that the time has flown by dphy

i seconds. This way
the test does not need to be executed in realtime but can be done in a fast-
forward mode. This is very important for batch execution of huge sets of
test cases. Notice that we interpret a σin as a recognition trace, assuming
an input sequence from the LM. The messages sent by the RE are logged
in σmoni, with timestamps in physical time (i.e. with a tempo of 60bpm). In
this scenario, the IUT is the RE (the LM is idle).

Antescofo Standalone

Input
trace σin

Internal
adapter

Listening
Machine

Reactive
Engine

〈a, t〉

tempo pos.

x σmoni

σref

compare

Figure 5.23: Testing the reactive engine and the tempo inference.

2) Reactive Engine and Tempo Inference Testing. In a second test
scenario, depicted in Figure 5.23, tempo values pi read in σin are ignored by
the adapter, which instead uses the tempo values inferred by the LM. The
adapter is calling an appropriate method of the LM, in order to compute
the events’ durations dphy

i . The rest of the scenario is similar to the first
scenario. The values of tempo inferred by Antescofo’s LM are stored by the
adapter and used later to convert the timestamps in the expected output
trace σref from performance to physical time, in order to be able to compare
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it with the real output trace σmoni. In this case, the IUT consists in the RE
plus the part of the LM in charge of tempo inference.

Remark that the LM infers the tempo based on the shifts between the
durations in σin and in the mixed score [36]. It might result in a tempo
increasing exponentially when durations in σin are too short.

Example 5.2.30: Let us see how the detected tempo can increase from the
ideal trace:

〈e1, 0, 144〉·〈e2,
1

7
, 144〉·〈e3,

2

7
, 144〉·〈e4,

3

7
, 144〉·〈e5,

4

7
, 144〉·〈e6,

5

7
, 144〉·〈e7,

6

7
, 144〉.

We execute the trace σexpin via this scenario:

σexpin = 〈e1, 0,_〉 · 〈e2,
9

70
,_〉 · 〈e3,

18

70
,_〉 · 〈e4,

27

70
,_〉·

〈e5,
36

70
,_〉 · 〈e6,

45

70
,_〉 · 〈e7,

54

70
,_〉.

Each event’s durations of this trace is reduced to 10% from the ideal values
(lasting 1

7 beat in the ideal case), because, e.g. it is the lowest bound in the
modelM′env. The duration of e1 is computed with the timestamp of e2 found
in σexpin : dσin1 = 9

70 − 0. Then we obtain a physical value of dphy
1 = 0.05357

second with a tempo of 144bpm (the score value by default). The detection
of e2 is earlier than expected and Antescofo’s LM modifies its current tempo
to 146bpm. The computation of the same relative duration ( 9

70) for the next
event is done with a faster tempo and gives dphy

2 = 0.05283 second, the event
is earlier so the next tempo is faster than 146bpm and so on. In this very short
example, we reach at the end a tempo of 150.3bpm, resulted in 6.3bpm more
than the score tempo only for 0.4 seconds of performance, it is impossible in
practice. ♦

3) Antescofo Testing. We propose a last test scenario, depicted in Fig-
ure 5.24. This scenario is the most general and is executed with a version of
Antescofo embedded in MAX-MSP (as a MAX-MSP patch), using an adapter
which is another MAX-MSP patch. The adapter iteratively reads triples
〈ai, ti, pi〉 in a file containing the trace σin, and converts them into MIDI
events, with durations dphy

i casted into physical time using (5.1). The events
are played by the MAX-MSP patch midisynth˜ and the audio stream gen-
erated is sent to the LM. The output of the RE is then traced in σmoni as
before.
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σin
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MSP patch)
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Figure 5.24: Testing the whole Antescofo system.

Note that here, the RE uses the tempo values detected by the LM, which
may differ from the tempo values in σin. The detected tempo values are
saved by the adapter, indeed, in MAX-MSP the detected tempo is available
as an outlet of the antescofo˜ patch. They are used later to convert the dates
in σref from musical into physical time, like in the previous scenario. In this
realistic scenario, the IUT is therefore the whole Antescofo system.

In an alternative scenario, the adapter uses the tempo values pi in σin for
computing the events’ durations dphy

i , like in the second scenario.

Note that in both the last two scenarios, the tests are executed in real-
time and not in a fast-forward mode. However an audio file of the sequence of
MIDI sounds can be recorded and sent later to the standalone in fast-forward
mode.

Online Testing Approach

The online approach uses the VM directly on the IRTM, hence the transla-
tion restrictions do not hold here. The loops actions and multi-time dura-
tions can then be kept in the model.

Figure 5.25 illustrates the online approach, the implementation follows
the VM description in Section 3.3 and its generation algorithm in Sec-
tion 4.3.1. The execution is done with the standalone version of Antescofo
and the internal adapter detailed into the scenario 1. However, the adaptor
uses OSC reception for reading from a file the events and amounts of time
to advance.

This adapter allows us to use the fast-forward feature even for the real-
time testing, increasing the possibilities of the online approach.
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Figure 5.25: Online Score-based IMS testing procedures.

Verdict

The offline and online approaches output a verdict, detailing the behavior of
Antescofo according to its reference for each input trace of the tests.

The verdicts are produced offline by a tool comparing the expected and
monitored traces σref and σmoni with an acceptable latency ε, generally about
0.1 ms. A verdict is pretty printed to inform the testers on the conformance
of Antescofo to the models. We mark as errors unexpected or missed atomic
actions sent or not by the IUT and a delay more than ε ms between the
model and the system actions. The document is split in logical instants in
order to visualize clearly the sequence of actions related to an external event
reception. The verdicts also detail the variations between the input trace
and the ideal trace in order to outline early or late events, which are not
always easy to detect.

Example 5.2.31: We depict in Figure 5.26 a verdict with the example
presented in Section 5.2.2 and for the attributes tight, global (meaning that
the timed-requirements modeled here are those specified in the mixed score).
The input trace is the ideal one with an event end to stop the test explicitly:
〈e1, 0, 120〉 ·〈e2, 1, 120〉 ·〈end, 2, 120〉. The verdict follows the monitored trace
(on the left) and details the reference values (on the right), depicting: the
label, the physical timestamp, called now in Antescofo, and the relative score
timestamp, called rnow, for each item. Notice that the labels on the right
change to be compatible with Uppaalmodel checker, and that the score tempo
is initially set to 120bpm. Each time advancement is compared to detect any
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_____________________________________________________________________________
|- Antescofo Trace | Expected Trace -|
|- label now [rnow] |label comp. timestamp [ref beat] -|
|---------------------------------------------------------------------------|
| a1 0 [ 0] | a0 0 [ 0]|
| e1 0 [ 0] | e0 0 [ 0]|* 120BPM
+ 0.25 ( 0.5 * 120) == 0.25 ( 0.5 * 120)

| a2 0.25 [ 0.5] | a1 0.25 [ 0.5]|
+ 0.25 ( 0.5 * 120) == 0.25 ( 0.5 * 120)

| a3 0.5 [ 1] | a2 0.5 [ 1]|
| b1 0.5 [ 1] | a4 0.5 [ 1]|
| e2 0.5 [ 1] | e1 0.5 [ 1]|* 120BPM
+ 0.25 ( 0.5 * 120) == 0.25 ( 0.5 * 120)

| a4 0.75 [ 1.5] | a3 0.75 [ 1.5]|
| b2 0.75 [ 1.5] | a5 0.75 [ 1.5]|
+ 0.25 ( 0.5 * 120) == 0.25 ( 0.5 * 120)

| END 1 [ 2] | e2 1 [ 2]|* 120BPM
|---------------------------------------------------------------------------|
Checked :: Test OK

Figure 5.26: A verdict returning pass.

time differences. Moreover, the interpretation information is depicted with
the ideal trace. The returned verdict is pass, denoted by OK, and assesses
the IMS conformance for this input trace. ♦

5.3 Experiments

Our TMBT framework allows us to assess the IMS Antescofo conformance to
a mixed score. However, we want to evaluate the effectiveness of our TMBT
framework and report the pros and cons of the different approaches.

Here, we want to measure a black-box testing framework and thus assume
that we have no feedback in the coverage of the Implementation Under Test’s
line codes and specially that we do not know the erroneous lines. We then
take as a metric of effectiveness:

• the coverage, in the IRTM locations, of the suite of test cases generated,
and

• the size of the input score, to evaluate state explosion for real cases.

The first criteria ensures the scalability of our framework, implying the pos-
sibility to test real mixed-scores. The second criteria allows us to judge the
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quality of the tests, indeed, greater is the coverage better the rtioco confor-
mance [44, 56] should assure a good time reliability for the system under
test.

This section evaluate the framework, following three algorithms for gen-
erating input traces, presented in Section 4.3. First, we test the CoVer gen-
eration method and the fuzzing generation to compare their pros and cons
wrt. the scalability and coverage measures. Then, we present our early online
testing framework and compare its outcome to the offline results.

The results were obtained with a MacBook Pro Retina with a 2.3 GHz
Intel Core i7 and 16Go 1600 MHz DDR3 of Memory. The laptop ran on the
El Capitan version of MAC OS X (10.11.6).

Case studies Presentation

We have considered two case studies in our experiments:

1. a benchmark made of hundreds of little mixed scores, covering many
features of the IUT’s DSL

2. a real mixed score of the piece of Sonata in F major, HWV 369 third
movement: Alla Siciliana by Georg Friedrich Händel 4.

The first benchmark is useful to provide tests for the development (debug-
ging and regression tests) of the system Antescofo. It aims at covering the
functionality of the system’s DSL and checking the reactions of the IMS.
The second mixed score is a long real test case, to evaluate the scalability
of our test methods. Its total size is 1018 events and 3237 actions gathered
in one big group in order to do automatic accompaniment by sending MIDI
notes. This second case study is split into five extracts: the first 5th bars (25
events and 84 actions), 8th bars (48-185), 10th bars (74-264), 15th (122-444)
and 40th bars (360-1218).

Each case study is processed with various values for nerr and κ, the
numbers of possible consecutive errors and the bound on the variation of
event’s durations. For the results, we used the VM developed for online
testing in order to compute the coverage of the suite of test cases generated
for each experiment.

4You can have a quick representation of the piece (with a description (in French) of
Antescofo) here:
https://interstices.info/jcms/c_17524/interaction-musicale-en-temps-reel-entre-musiciens-et-ordinateur

https://interstices.info/jcms/c_17524/interaction-musicale-en-temps-reel-entre-musiciens-et-ordinateur
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5.3.1 Results with Offline Approach

Covering generation

We evaluated the generation of test data with Uppaal/CoVer following the of-
fline method presented in Section 5.2.3. The script creates the IRTMs, trans-
lates them into networks of TA, generates test suites using CoVer, executes
them according to the first scenario presented Section 5.2.3 and compares
the outcome to test cases.
XXXXXXXXκ (%)

nerr 0 1 3 5 7

0 18,231 - 051 19,402 - 107 23,377 - 164 26,424 - 313 26,443 - 307
1 18,231 - 025 19,402 - 076 23,377 - 137 26,424 - 319 26,443 - 318
3 18,111 - 024 19,402 - 077 23,377 - 137 26,424 - 318 26,443 - 314
5 18,231 - 028 19,402 - 077 23,377 - 132 26,424 - 312 26,443 - 309
10 18,231 - 035 19,402 - 082 23,377 - 140 26,424 - 320 26,443 - 323
25 18,231 - 059 19,402 - 086 23,377 - 135 26,424 - 334 26,443 - 328
50 18,231 - 103 19,402 - 132 23,377 - 160 26,424 - 354 26,443 - 352

Table 5.1: CoVer on the benchmark: the total size in number of IRTM states
(on the left) - the time in seconds to perform the whole script (on the right).

XXXXXXXXκ (%)
nerr 0 1 3 5 7

0 754 - 67.78% 1674 - 82.33% 2781 - 87.95% 3271 - 87.60% 3262 - 87.28%
1 612 - 67.79% 1471 - 81.56% 2615 - 87.75% 3183 - 88.16% 3152 - 87.44%
3 609 - 67.75% 1456 - 80.42% 2635 - 87.94% 3160 - 87.05% 3162 - 87.41%
5 613 - 67.97% 1468 - 81.54% 2633 - 87.81% 3140 - 87.07% 3124 - 86.06%
10 715 - 68.01% 1513 - 81.51% 2681 - 87.90% 3191 - 87.37% 3201 - 87.56%
25 994 - 68.18% 1720 - 82.36% 2691 - 87.60% 3243 - 88.29% 3277 - 88.02%
50 1623 - 69.22% 2301 - 83.41% 3006 - 88.82% 3577 - 88.34% 3553 - 88.54%

Table 5.2: CoVer on the benchmark: the number of σin generated (on the
left) - their related coverage (on the right).

Tables 5.1 and 5.2 report the results with different environment options
for all the scores in the benchmark. The first table details the total size
of the model part Msys in number of IRTM locations and the total time
to execute the whole benchmark. The second table presents the number of
input traces generated by CoVer and the coverage onMsys locations of their
related test cases.

The same script was ran for the extracts of the real mixed-score and the
results are reported in Table 5.3. The table depicts the number of input
traces generated with their total coverage for each extract, denoted by its
number of bars. The size of the IRTM Msys is 328, 697, 1005, 1678 and
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`````````̀nerr -κ (%)
bars 5 8 10 15 40

0-00 1 - 43.59% 1 - 38.92% 1 - 39.01% 1 - 38.72% 1 - 38.72%
0-10 38 - 43.59% 74 - 38.92% 117 - 39.01% 262 - 38.72% x
0-25 95 - 43.59% 201 - 38.92% 427 - 39.01% x x
3-00 84 - 66.66% 130 - 86.48% x x x
3-10 85 - 66.66% 148 - 86.48% x x x
3-25 94 - 66.66% 159 - 86.48% x x x
7-00 113 - 96.94% x x x x
7-10 133 - 96.94% x x x x
7-25 147 - 96.94% x x x x

Table 5.3: CoVer on the real case: number of σin generated (on the left) -
their related coverage (on the right).

4668 locations for the extracts of 5, 8, 10, 15 and 40 bars of the mixed-score
respectively. In Table 5.3, the crosses depict a state explosion during the
generation of input traces, because no output was returned or because a
crash happened during one of the script steps.

Feedback. The advantages of the CoVer generation are its effectiveness to
generate covering test suites for the first case study. This case study contains
a lot of small-sized mixed-scores that is perfect in such a case. Moreover,
the amount of time is correct since the scripts spent 352 seconds to generate
and test 3553 input traces, an average of 10 seconds per input trace, with a
good coverage on 88.5% of the model locations. However, the inconvenient
are also multiples. We have not a clear control on the coverage according
to the environment parameters. For example, the possibility of missing one
more event improves more the coverage than allowing more interpretation on
the durations. The real case shows clearly the lack of scalability because the
extracts of more than 10 bars (74 events and 264 actions) cannot be tested
with errors.

The CoVer generation is efficient for toy-examples where the mixed scores
are written in a purpose of debugging. However, CoVer cannot be satisfying
for real cases. The input traces are commonly generated with the lower val-
ues in their durations, because of the guards in the model. These values are
not musically relevant since when converting performance time into physical
time, having an input trace with shortest delays may result in a geometric
progression of the tempo inferred by Antescofo, leading to exponential ac-
celerations and unrealistic tempo values (for example a tempo of 300bpm) as
presented in Section 5.2.3 for the second scenario of simulation. These weak-
nesses encouraged us to explore other approaches for test data generation
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and execution as detailed in Section 4.3 which can be used to circumvent
this problem.

Fuzzing generation

For the fuzzing generation, the script first creates the IRTMs without envi-
ronment model Menv, then, fuzzes the ideal trace to create a set of input
traces and translates the IRTMs, with a specificMσ′in

env for each input trace,
into networks of TA. With these models, the script simulates the TA using
Verifyta, the Uppaal model checker command tool, to compute the reference
traces. Then, the script executes the input traces according to the first sce-
nario presented in Section 5.2.3 and compares finally the two output traces.

`````````̀nerr -κ (%)
bars 5 8 10 15 40

0-00 1 - 38.81% 1 - 14.67% 1 - 38.27% 1 - 38.05% 1 - 38.02%
0-10 10 - 38.81% 10 - 14.67% 10 - 38.27% 10 - 38.05% 10 - 38.04%
0-25 10 - 38.81% 10 - 14.72% 10 - 38.27% 10 - 38.11% 10 - 38.02%
3-00 10 - 37.65% 10 - 21.15% 10 - 34.21% 10 - 28.72% 10 - 23.21%
3-10 10 - 41.91% 10 - 34.69% 10 - 32.75% 10 - 32.59% 10 - 27.91%
3-25 10 - 28.05% 10 - 28.83% 10 - 28.48% 10 - 27.85% 10 - 25.89%
7-00 10 - 17.03% 10 - 17.21% 10 - 17.26% 10 - 16.37% 10 - 15.60%
7-10 10 - 17.68% 10 - 17.36% 10 - 16.76% 10 - 16.21% 10 - 15.90%
7-25 10 - 18.01% 10 - 18.09% 10 - 16.55% 10 - 16.53% 10 - 15.66%

Table 5.4: Fuzz on the real case: number of σin generated - coverage accord-
ing to each extract and the different environment restrictions (nerr − κ).

The values are depicted in Table 5.4 for the real mixed-score and with
the fuzz generation. We do not report the amount of time to process the
tests since we cannot compare a script doing an input generation against a
random fuzzing one. To have an idea, the extract of 5 bars with parameters
7-25 lasted 97 seconds for a test of one input trace using Verifyta.

The advantage of the fuzzing generation is the little deformations of the
ideal trace, that keeps the input traces musically relevant. Moreover, in a
musical point of view, we think that a little interpretation is sufficient to
consider later, earlier or missed cases, i.e. have a good coverage on the
musician performances. The method is fast and can manage huge mixed-
scores that is good for real cases. However, since the fuzz is done randomly
we have no control on the coverage which is low for a set of input traces.
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number of σin 1 10 100 1000
percentage of coverage 12.72% 15.78% 21.95% 32.35%

Table 5.5: Fuzz: number of σin generated for 40 bars of the real mixed score
with parameters 7-25.

Evaluation of the coverage of fuzzing generation

Random test is an important strategy for test input generations and is widely
used in the state-of-the-art. However, it lacks of precision since no control
is possible in the randomized values. We add an experiment to evaluate
the coverdness of our fuzzing script according to the number of input traces
generated with 7-25 values for the parameters nerr and κ respectively.

We present in Table 5.5 the results on the first 40th bars of the mixed
score of the Sonate used as the second case study (see page 145). The rise
of the generated trace number improves as expected the coverage, but it is
still very low even for a thousand of traces, that lasts as long as a CoVer
generation. This experiment confirms that this second generation cannot be
covering and motivates us for another strategy or targets addition for guiding
the fuzz algorithm.

5.3.2 Results with Online Approach

Finally, we report in Table 5.6 an evaluation of our online testing approach.
For the online experiment, we deployed a script running the Virtual Machine
(VM) and the IUT Antescofo at the same time on the machine, the two
softwares communicate via the protocol Open Sound Control (OSC). The VM
constructs and simulates the model following the method and the algorithm
detailed Section 4.3.1. The IUT is run with an online adaptor which waits
for an input stimulation, an event symbol or a duration, from the model.
Recall that, although the method is online, we execute it in a fast-forward
fashion, preventing from waiting for the real durations.

The online framework is promising. Our first experiments succeeded in

number of σin 10 50 100
percentage of coverage 59.32% 62.09% 62.09%

time in seconds 24 114 249

Table 5.6: Online: number of σin generated for the all mixed score (18.641
model’s states).
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managing the entire real mixed score (case study 2) and performed a hundred
of input traces for 4 minutes. We are working on improving the online
algorithm wrt. coverdness of the test suite generation. In particular, we
are working on improving the distribution of input events, using constraint
solving techniques like in SAGE [20, 51].

Summary

In this chapter, we applied our TMBT framework to a state-of-the-art IMS.
We first presented the IUT of our application, the score-based IMS Antescofo.
Then, we detailed the abstract syntax handled by the construction rules and
their definition for constructing IRTMs from every mixed-score included in
the syntax. We detailed the possible implementation and parameters pro-
vided by the framework to test Antescofo. Finally, we reported experiments
of the offline and online approaches with the possible generation algorithms
implemented in our framework. The results allow to compare the different
options and present the application of our testing procedure to Antescofo on
real cases.

Because it is a young framework and is applied to a constantly improving
system, the accuracy of raised errors is sometimes difficult to assess. How-
ever the errors raised by the framework are timed errors since they come
from a wrong output or a wrong timing of an output. Actually we reported
errors which came from a concurrency problem which disturbed the schedul-
ing of the outputs, a communication/synchronization problem regarding the
inputs/outputs, a wrong time computation (from the tempo updating func-
tion) and a wrong management of the specified group’s attributes. Moreover
several of these errors happened for non trivial input cases, making them
hard to find by other means.

These abilities to find errors in Antescofo confirms the well utility of
our test framework and encourages us to extend its applicability to IMS in
general.



Chapter 6
Conclusion and Perspectives

In this thesis, we presented a fully automatic Timed Model-Based Testing
(TMBT) framework dedicated to real-time Interactive Music Systems (IMS).
One originality of the case study is that the models are constructed auto-
matically from the mixed scores required by the score-based IMS, instead of
being written manually by an expert.

First, we presented the model of our framework, called Interactive Real-
Time Model (IRTM), specifying the implementation under test and its en-
vironment (i.e. the human musicians accompanied). IRTMs are designed to
model easily the semantics of a score-based IMS, and in general, both time-
triggered and event-driven systems. Moreover, in order to specify musical
scenarios, the model provides durations related to different time units.

IRTMs borrow both from the Timed Automata model and the logic time
semantics of the synchronous programming languages for reactive systems
Esterel [13]. In order to simulate such models, IRTMs can be interpreted as
a byte-code by a virtual machine or can be translated (under restrictions)
into Timed Automata for using tools of the Uppaal suite.

Then, we exposed our TMBT framework, based on IRTMs. This frame-
work permits to assess the IMS timed conformance to a mixed score and
provides multiple options such as the offline and online approaches for the
generation of covering and relevant test cases.

Finally, a case study was presented and consist in the application of our
framework to Antescofo. Antescofo is a constantly evolving score-based IMS
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used in live on current music productions. We presented the implementations
of our framework for the IMS and reported the results of the experiments in
order to evaluate the framework efficiency.

To conclude we answered to the question: “Can formal methods be used
to test embedded systems ?” with encouraging perspectives. Effectively, we
implemented a framework to test an IMS and applied it to real test cases
via concrete experiments.

During these testing procedures, one technical difficulty was the necessity
to deal with different time units, in particular the musical time relative to
a tempo. This problem prevented us from using the online testing tool
Uppaal Tron out of the box for our case study. Hence, we implemented our
own online MBT framework using a virtual machine interpreting directly the
IRTM without any restrictions. This newly method is yet promising since
an entire real mixed score passed successfully a first experiment using a non
trivial “on-the-fly” algorithm for the generation of test input data.

Our method is designed to test the behavior of the IMS on one given
score, by generating a covering set of input traces describing a range of
musical performance of the score. This approach is advantageous both for
IMS debugging, thanks to coverage criteria, and for user assistance to au-
thor mixed scores, using the fuzz generation based on models of musical
performance. The framework detected successfully some errors from the im-
plementation under test and is used to store a number of tests for regression
purpose. We argue that it is yet a good framework for testing real-time
systems.

Besides the case of IMS, our approach could be applied to the test of
other real-time reactive systems involving pre-specified temporal scenarios,
feedback and timed interaction with humans. It is motivated by the for-
malization we provided describing the IRTM syntax and semantics with its
related test framework. These descriptions manage abstract symbols that
can be mapped to several applications. Briefly, we can apply in general the
framework to test cyber-physical systems coupling computing devices with
physical components and humans in the loop.

We terminate this manuscript with a discussion, the related work and
the possible perspectives of our work.
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6.1 Discussions

In this section, we discuss about the characteristics of the test framework
and expose the related work. The discussion will follow the workflow of our
MBT framework, exposing our remarks for each step. Then, we highlight in
the related work, how they are linked to the existing approaches explaining
the differences and the choices we have made in the application of our TMBT
framework to our peculiar context.

Construction. The automatic model construction brings an easy way to
make models. It requires an abstract syntax and related construction rules in
order to automatically build a model from whatever requirements included
in the abstract syntax.

In the case of Antescofo mixed score, the complexity of its model con-
struction depends on the number of event Ne and actions Na in the mixed
score. The worst case consists in having Na groups requiring a traversal
of the entire score, giving a complexity of O((2 + Na) ∗ Ne) + Na) in time
(the 2 comes from the proxy P and the environment model Menv), with
O((8∗Na) + 2nerr ∗Ne) locations and O((8∗Na) + 2nerr ∗Ne) transitions in
space (supposing the group matching the worst tight global cases). Remark
that the real number of actions for this case is N2

a because it is required to
have at least one atomic action in a group. In practice, we have a quadratic
complexity in time and a linear complexity in space, notice moreover that
the construction algorithm traverses the AST using the visitor pattern that
is pretty fast in time.

Then, during the translation, we require 3 additional model traversals
that has no impact on the entire computation time but adds 4 internal signals
per group, 2 internal signals per event and ((Ne∗Na)+4Na) transitions on the
resulted TA. This explosion is due to the need in an Uppaal TAmodel (at least
when using CoVer) to explicitly specify the environment action receptions.
Unfortunately, to prevent from losing a possible test case, we need to add
for every suspending location (i.e. for every event) one reception for every
action in the model.

The modular approach provided by the connectors (the providers, seekers
and their operators) makes the model construction compositional. In the
sense that add a group or compose models or sub-models becomes easy. This
modularity assures the scalability of the compilation process of the model.

The construction procedure is not totally without effort since the rules
need to be written by testers. However, they construct little parts of the
model according to the abstract syntax specifying the system. Moreover,
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they allow to automatically build for any requirements following an abstract
syntax their related model. The automatic construction greatly eases and
clarifies the specification by linking to the syntax a part of model composed
during construction. Once specified, the test procedure becomes effectively
fully automatic, from the requirement to the verdict.

Generation. We have two approaches to implement test data generation
methods, the former, offline, ensures a good quality of the test data via
covering features; the latter, online, scales to big scores and fits the musical
context of the generated traces. The main drawbacks of these approaches
are the scaling problem of the former method and the coverage management
of the latter. However, the fuzzing generation permits to process real cases
and manages TIFs functions to guide the tests. This last method can be
improved and adapted to the online algorithm for solving its weakness of
coverage.

Remark that implementing alternative generation methods was highly
motivated by the main limitations of the CoVer offline approach. Specially
because the input traces are not musically relevant (because of CoVer which
strictly follows the model constraints). However, this approach is well suited
for debugging the system Antescofo, using small ad-hoc scores (see Sec-
tion 5.3).

Execution. The blackbox decision during the execution step is not an
usual case in MBT frameworks. The possibility to target the whole system or
a discrete module provides a new vision of testing. Thanks to the multi-time
input traces, different interpretations allow to test different IUT’s modules
with the same model. In our case, we can deduce the variations on the output
of the system with or without the LM module for the same input trace, i.e.
testing only the RE or the whole system. It may be another way to check
the reliability and the relevance of complex physical-recognition/following
algorithms by composing the module tested themselves onto the blackbox.

6.2 Related Work

Some tools exist for automating the test of IMS, like for instance the MAX-
test package [73] for testing MAX patches through assertions. These systems
conveniently provide sophisticated tools for automating execution of test
data and reporting, but they generally do not offer procedures for generating
test data. Hence, the user must compute some input test data and the
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expected corresponding output by other means. Our approach in contrast
focus on the generation of test data, based on formal models, and in this
respect the two approaches can be seen as complementary.

Other works have addressed the formal verification of multimedia systems
based on TA models, as for instance the verification of a lip-synchronisation
protocol (synchronization of audio and video streams) in [24]. Model check-
ing procedures have also been used for music improvisation [11]. TA, Uppaal,
as well as timed Petri nets, are used in i-Score [8], a framework for com-
position, verification and real-time performance of Multimedia Interactive
Scenarios. To our knowledge, no other work has applied such formal models
to the test of IMS.

One drawback of many MBT methods is that they generally require a
manual expert intervention for the construction of models. Some specification-
based testing procedures also involve the automatic construction of models
from high-level user specification of test case scenarios. For instance, in [34]
the specifications are written in the quasi-natural language Gherkin and the
models are used with the model-based testing tool QuickCheck. In our case,
the mixed scores can be considered as a complete specification of all the
possible timed scenarios rather than some test case scenarios. Moreover, our
specifications are not written for test purpose but prior to the execution of
the system during an interactive performance. Hence, they are defined by
users before the time of testing and no more intervention is needed during the
test workflow. Therefore, our test procedure involves temporal values that
is not common in MBT with an automated construction of timed models.

The system GUITAR, presented in [70], proposes to use static analysis
and semi-automatically reverse-engineer methods for constructing an event-
flow model from an implementation of the GUI functions of JAVA programs.
Notice that we are producing our IRTM models by analysis of mixed scores
too, however, we are not testing the written mixed score but the interpreter
(i.e. the system) executing this score. More precisely, a IRTM model is
produced by parsing a mixed score and traversing its abstract syntax tree,
using sequential and concurrent composition operators for the IRTM, similar
to the glue operators in [15, 16]. This approach is modular in the sense that
the model of several scores can be combined into a larger model using these
operators.

Moreover, our IRTMs are also executable, similarly to the Ecode of
[54, 50], which is obtained by compilation of programs in the time-triggered
programming Giotto language and is used for static analysis of properties
such as time-safety or schedulability. An earlier version of the IRTM pre-
sented in this paper has also been used for analysis of the robustness of
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Antescofo mixed scores [47].
Our approach for the offline generation of test input by fuzzing ideal

performances is inspired by fuzz testing. In [21] the fuzzing method is used
in a white box fashion in a large scale testing framework. Although we
follow a black-box testing approach, we use the same strategy which consist
in starting from a perfect input and mutating it. Note that, in contrast to
most fuzz testing approaches, we needed to deal with time values in this
context, and applied for this purpose models of music performance from the
literature.

6.3 Future Work

Several possible perspectives could improve our testing framework or explore
its features. We present some of them in this section.

Specification and Model Construction. The model construction is
based on some requirements written by the user. In case of scored-based
IMS, the requirement file is the score, which is mandatory for the system to
run. Nevertheless, in general one may think that we “delayed” the specifi-
cation problem to the users side. Indeed, the testers just need to develop a
concrete language to fit the abstract syntax parsed by the construction rules.
A future work can be to generalize such syntax, here implemented by the
Antescofo’s DSL, to provide a language for expressing easily common spec-
ifications of real-time systems. We have already mentioned, in the related
work Section 6.2, the language Gherkin1 which uses the simple Given-When-
Then format to specify system scenarios with a quasi-natural language. In a
general case, we can imagine the specification of an ideal scenario in which
a list of events describes the actions they trigger, and how these events are
timely linked together.

Offline Test Suite Generation. The offline test generation approach
based on CoVer is a good first step into applying some existing MBT tools
to our case study, with a purpose of exhaustiveness. In our case however, it
has some limitations and cannot be considered as the best way to generate
input traces. Indeed, this approach builds a trace σin with duration values
restricted to the shortest delays that causes exponential accelerations, it
is not a scalable approach and needs to hold the translation restrictions.
A way to bypass these problems could be to re-implement (in Uppaal) the

1Available at: http://github.com/cucumber/cucumber/wiki/Gherkin.

http://github.com/cucumber/cucumber/wiki/Gherkin
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algorithm of CoVer with random choices of delays insides regions, instead
of the systematic choice of the shortest delays. Indeed, the Alur and Dill’s
region graph [2] partitions a TAmodel in terms of future behaviors, the states
which can fire the same set of discrete transitions are merged. These graphs
can be used to easily compute our coverage during the generation, fuzzing a
little our input timing variables to change the regions reached by the set of
generated traces.

Online Testing and Virtual Machine. The VM can compute the cov-
erage of the IRTM modelMsys for a given set of σin. This information could
be very useful in order to assess the quality of a set of input traces indepen-
dently generated (e.g. using a set of TIFs). Formal models can be developed
and used in the online generation to compute a covering set of input traces.

A work has been started adding probability values in the model. The
technique must be implemented in the test framework as a possible option
of input traces generation and experiments must be performed to compute
the efficiency of this method. In [9], a uniform sampling for TA is proposed
to tackle the problem of language inclusion measurement. This method can
be adapted for our generation purpose by computing from a TA (or the
equivalent IRTM) a relevant sampling of probability values, to explore the
model.

However, along these algorithms, the main question summarizing these
generations of input traces for IMS is: Can we highlight a musical sense to
a model coverage ? And Is an input trace with a good coverage sufficient to
consider all the possible performances we can confront to a IMS?

Visualization. In Section 5.1, where Antescofo is presented, we briefly in-
troduced its open-source visualization software: Ascograph. A recent work
has been performed to improve this software and add more features. A pos-
sible improvement would be to add a monitored trace view to this software,
and run Antescofo with an input trace created with Ascograph. As a result, a
debugger view can be added, where an input trace can be built by the user,
resulting in a display of the related reactions emitted by the system. The
debugger can provide more complex and interesting feedback on the score
from the test framework. The IRTM graphical view can play a role in the
understanding of the system reactions and can be used for debugging.

Time-Safety. During performance of Antescofo, MAX-MSP manages the
time scheduling and the sound processing of the system. An Antescofo’s



158 CHAPTER 6. CONCLUSION AND PERSPECTIVES

improvement consists in be free from the environment of MAX-MSP, man-
aging the real-time clock computations and audio/control balance by itself.
It is a well-known problem for mixed-music and IMS softwares and is al-
ready a study presented in [45]. The complexity consists in allocating time
for sound-processing and generation, which requires a non negligible time
resource consumption. Meanwhile, the variable computations for the control
requirement of the software must be performed.

In order to tackle the problem, the IRTM can be extended with ports
and task features separating the complex and non instantaneous functions
from the fast IRTM code. It will allow time-safety analyses and a schedul-
ing computation in order to assure the possible execution of a piece and to
create watchdogs in case of dynamical changes during a performance. This
method is inspired by the Logical Execution Time [62] (LET) abstraction,
which combines the Bounded and Zero Execution Time (resp. BET and
ZET) in a byte-code assuring time-safety of multi-task systems (using their
WCET value). It was concretized with the time- and event-time-triggered
language Giotto [54] and XGiotto [50], presented in the related work, success-
fully applied to a realtime drone system. Moreover, such syntax will permit
to specify more features of the Antescofo DSL and test the whole system.
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Appendix A

Byte-Code IRTM

We present an example of a byte-code representation from a IRTM presented
in the Section 5.2.2. The code is depicted in Figure A.1. A line contains: the
instruction index in the code and the transition name or a list of transitions
in case of branches. When an arrow is depicted after an instruction, the
succeeding number is the index of the next instruction, if not depicted it
is the instruction just after. We keep the event symbols in the listing to
understand the code, however, it can be mapped in simple signal numbers.
Finally, the ‖ denotes an and -transition, the two numbers corresponds to the
next locations `1 and `2.
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170 APPENDIX A. BYTE-CODE IRTM

000 and -> 001 || 013
001 and -> 002 || 009
002 emit e0
003 wait [1]
004 emit e1
005 wait [1]
006 emit e2
007 wait [2]
008 branch
receive 2 -> 008

009 receive e0
010 receive e1
011 receive e2
012 stop
013 and -> 014 || 026
014 and -> 015 || 036
015 stop
016 emit a0
017 wait [0.5]
018 emit a1
019 wait [0.5]
020 emit a2
021 wait [0.5]
022 emit a3
023 stop
024 branch
receive mSe1 -> 025

receive e1 -> 020

025 stop
026 branch
receive e0 -> 027

receive mSe0 -> 028

027 and -> 029 || 016
028 and -> 030 || 024
029 stop
030 stop
031 emit a4
032 wait [0.5]
033 emit a5
034 stop
035 stop
036 branch
receive e1 -> 037

receive mSe1 -> 038

037 and -> 039 || 031
038 and -> 040 || 035
039 stop
040 stop

Figure A.1: Byte-code listing for the example Section 5.2.2.
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