
A Gentle Introduction to Somax
Somax is an interactive system which improvises around a musical material, aiming
to provide a stylistically coherent improvisation while in real-time listening to and
adapting to input from a musician. The system is trained on some musical material
selected by the user, from which it constructs a corpus that will serve as a basis for
the improvisation. The corpus and the output of the system is currently based on
MIDI, but it is able to listen and adapt to both audio and MIDI input from a musi-
cian.

The main idea is that Somax should serve as a co-creative agent in the improvisa-
tional process, where the system after some initial tuning is able to listen and adapt
to the musician in a self-sufficient manner. Of course, the input doesn't have to
come from a live musician; any type of audio and/or MIDI input works, be it from
an audio file, score editor, synthesizer or DAW. Somax also allows detailed paramet-
ric controls of its output and can even be played as an instrument in its own right.
Also, the system isn't necessarily limited to a single agent or a single input source -
it is possible to create an entire ensemble of agents where the user in detail can con-
trol how the agents listen to various input sources as well as to each other.

The goal of this text is to provide a brief introduction to Somax and provide the
reader the with fundamental knowledge about how its interaction model works, which
in turn should serve as a basis for making informed choices when tuning and inter-
acting with the system. For a hands-on introduction to Somax and its user interface,
also see the interactive tutorials that can be found in the same folder as this docu-
ment.

The Corpus and the Navigation Model

As previously mentioned, the Somax system generates its improvisation material
based on an external set of musical material, the «corpus». This corpus can be con-
structed from one or multiple MIDI files freely chosen by the user. In contrast to
many other generative approaches, the system does not construct a model that even-
tually is independent of the material that was used to train it. Rather, the model
is constructed directly on top of the original data and provides a way to navigate
through it in a non-linear manner. One way of seeing this is to consider that some
fine-grained aspects of the musical stream are somehow too complex to be modeled,
but will be preserved – to a certain extent – when rereading this musical material.

When presented with some MIDI material, the first step is to segment the musical
stream into discrete units or «slices», which are vertical (polyphonic) segments of the
original midi file and where the duration of a slice is the distance between two note
onsets.1 Each slice is analyzed and classified with regards to a number of musical

1In recorded corpora (or any type of non-quantized MIDI) it is rare for any two notes that are
perceived as simultaneous to be exactly simultaneous. Since one goal of Somax is to be able to
maintain and reproduce the original timings within slices as recorded, notes with almost simulta-
neous onsets will still be grouped together in a single slice but with their internal timing offset pre-
served.
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features related to its harmony, individual pitches, dynamics, etc., and these features
will serve as the main basis for constructing the navigation model. This process is in
a way similar to that of concatenative synthesis, where an audio signal is segmented
into meaningful units, analyzed and recombined with respect to the analysis, but in
this case (at least for now) based on MIDI data.

Figure 1: Constructing a corpus by segmenting midi data into «slices».

From the sequence of slices, the navigation model is constructed through the detec-
tion of common patterns within the musical material. Or more specifically, the pro-
cedure of detecting common patterns is repeated for each feature in the analysis,
effectively resulting in a multilayer representation where each layer roughly corre-
sponds to one feature, i.e., one layer for harmony, one for pitch, etc.

When a musician interacts with the system, a similar process of segmentation and
multilayer analysis is computed on the input stream, and at each point in time the
result of this process is matched to that of the navigation model, generating acti-
vations, or «peaks», at certain points in the corpus where the input corresponds to
the model. Each peak corresponds to a point in the memory, so the entire set of
peaks can effectively be seen linearly as a one-dimensional representation over the
corpus' time axis (see figures 4 and 6 below for examples). The peaks in each layer
are merged and scaled all according to how the system has been tuned, and finally
the output slice is selected based on the distribution of the peaks.

Figure 2: An overview of the steps through which the system generates its output at each
given point in time.

The generated output of this process is an co-improvisation that recombines existing
material in a way that's coherent with the sequential logic and statistical proper-
ties of the original material while at the same time adapting in real-time to match
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the input from the musician. One benefit of this procedure compared to many other
approaches of statistical machine learning is that the system can generate long im-
provisations from a small musical corpus, allowing the user detailed control over the
style of the output or even specifically compose pieces of material intended to serve
as a Somax corpora. Of course, it has to be recognized that this method is also one
of the downsides with the model. The process of improvisation is to some extent re-
duced to a smart cut and pasting of pre-existing material, which is a very simplistic
modelling of what improvisation is as a human skill. Still, the output is through the
process of attempting to balance the internal logic of the corpus with the external
logic of the musician often providing a mix of coherency and unexpectedness in a
way that convincingly gives the impression of an active agent in the improvisational
process.

Interacting with Somax

When interacting with Somax, there are three main concepts that are important to
understand: «slices», «influences» and «peaks». A slice, as previously mentioned, is
a short segment of the corpus and serves as the smallest building block of the out-
put of the system. The slice can be manipulated to some extent (transposed, filtered
with regards to voices/channels, etc.) but will always maintain most fundamental
properties of the original corpus.

An «influence» is in a way conceptually very similar to a slice, but with a vastly dif-
ferent purpose. When Somax listens to a musician, this musical stream is segmented
and analyzed with respect to its musical parameters similarly to how the corpus was
constructed, but with a slightly different set of methods to be able to operate in re-
al-time. The result of this process are discrete chunks of multilayer data or «influ-
ences», which the system uses to be able to compare the input to the corpus, where
the main purpose of the influence is to act as the guide that determines the output
of the system. The concept of an influence may initially seem like an implementa-
tion detail, but will become increasingly important for more complex configurations
with multiple agents and/or multiple input sources. The main takeaway is that the
system cannot listen directly to a musical input stream, but will need to translate it
into influences, and that the process of tuning the listener can be a very important
factor for the quality of the co-improvisation.

Finally, a «peak» is, again, a point in the corpus where the input corresponds to the
model, or simply a match between an incoming influence and a corresponding slice
that would serve as an output candidate. Each peak has a height, corresponding
to a probability (or viability) of that particular slice as an output candidate. Un-
like influences (which are visible in the interface) and slices (which are correlated to
the audible output of the system), peaks are never interacted with directly, they're
only part of the internal state of the system, but perhaps the most vital part. Each
peak effectively corresponds to a slice in the corpus that could serve as an output at
the current point in time, given the latest influence. Having a reasonable number of
peaks is thus vital for the quality of the output, since having no peaks means that
the output has not taken the musician's influences into account, and on the opposite
side, in most cases a large number of peaks indicate that the matching is imprecise.
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Figure 3: While the user doesn't interact directly with the peaks, they are still indicated in
the user interface. Here, the colors green, red, blue and white correspond to the number of
peaks in the feedback layer (more on this later), pitch layer, harmonic layer and total num-
ber of peaks after merge respectively.

To put the concept of peaks in context, let's dive a bit deeper in how the system
works. While the musician is playing, Somax is at each detected onset segmenting
the input into influences, carrying information about the pitch, harmony, etc. of
what the musician currently is playing. This process is carried out by agents of the
system called «influencers». This information is routed to a «player», which han-
dles the entire process of matching and generating output. The influence is classified
in multiple layers by the player, as briefly mentioned, where each layer corresponds
to one musical dimension (e.g. harmony, melody) of the influence. In each layer, a
model of the corpus with respect to the particular layer's musical dimension exists,
and upon receiving an influence, the model will look for sequences in the corpus that
match the sequence of most recent influences from the input, and in each of those
places generate peaks.

Figure 4: The process of shifting and decaying previous peaks in a single layer upon receiv-
ing new influences (the process of matching the incoming influence to the corpus has been
omitted for clarity).

The system is also simulating a type of short-term memory inside this model by not
immediately discarding peaks from previous influences, but rather shifting them
along the time axis of the corpus and decaying their height corresponding to the
amount of time that has passed, followed by merging them with the new set of peaks.
This means that sequences continuously matching several consecutive influences will
be more highly prioritized over others, as is illustrated in figure 4. Finally, the peaks
from all layers will be merged together into a single set of peaks which the system
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will use to probabilistically determine which slice is the best output candidate2. The
result of this multilayer peak merging process is an output that will not just strictly
match the harmony and pitch of the influence but rather improvise around the most
recent history of influences with regards to the corpus, often (depending on how the
parameters tuned) selecting peaks matching both the harmony and/or melody of the
input but with an ability and agency to act more freely with regards to its history.
In addition, there's also a layer which listens to the output of the system, a feedback
layer, that can be used to balance the player's consistency with the input with its
continuity with its own performance. The balance between the different layers as
well as control over the decay time of old peaks, length of sequences to match in the
memories, etc. are all available in the user interface as displayed in figure 5.

Figure 5: User interface to control the balance between the dimensions, length of matching
sequences for each dimension as well as decay time of peaks.

If the concept of peaks isn't perfectly clear to you after reading this – don't worry!
Go to the tutorial and start experimenting with the system while keeping one thing
in mind: if the number of peaks is continuously zero or continuously too high3, this
is likely an indicator that the system is working poorly and should be retuned. If not
– you're probably doing quite well.

Another important aspect of the interaction with Somax is its relation to time. Ac-
cording to the user's preference, each player can be assigned to either operate contin-
uously in time as an autonomous agent, maintaining the pulse and exact within-slice
timings of the original corpus (while possibly adapting to the tempo and/or phase of
the input), or operate reactively, generating output synchronously as requested by
the input. In the continuous case, this means that the player improvises freely over

2actually, in addition to this, there are a number of parameters that scale the height of the
peaks individually with regard to a number of other musical parameters of choice, but this is thor-
oughly documented in the help files in max and will not be discussed here

3exactly how large "too high" is varies with the type of layer and context, but larger than 10%
of the total number of slices in the corpus with no transpositions active could serve as a reference of
"too high" that is valid for most layers and contexts
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Figure 6: Three layers of peaks corresponding to different musical dimensions such as
pitch, harmony, feedback, etc., being merged into one set of peaks before the final scaling
and peak selection. Here, all three layers are weighted equally, but it is possible to balance
the contribution from each of the layers.

time while still taking the influences of the musician into account, while in the reac-
tive case, it synchronizes strictly (note-by-note) with the input. Of course, the player
is in the latter mode not strictly limited to the input from where it receives its influ-
ences, but could be connected to a third source of some sort, for example any type of
step-sequencer or other generative approaches, thus giving the user multiple options
for controlling the temporal domain of the system.

Constructing the Corpus

By default, constructing a corpus is as simple as dragging a MIDI file to the «Cor-
pus Builder» window in the user interface, from which Somax will build an internal
representation with slices, as explained, along with annotations attached to relevant
dimensions. There are however a number of things to consider here. If the input to
a player and its internal corpus were made from similar source of materials, an ideal
response of the player would tend to simply replicate the input. A great deal of vari-
ations or new musical situations will however arise from the discrepancies between
the input and the corpus, and from the different mappings that the user can set for
defining the musical dimensions considered by the player. As we are mostly talking
about MIDI content here (players and MidiInfluencers) this is nothing else than a
mapping between the MIDI channels and the melodic and harmonic dimensions.

This mapping occurs three-fold. Firstly, a player will have to know what subset
(what MIDI channels) of its content (its corpus) maps to its internal melodic or har-
monic dimensions, also called its «listening dimensions». Secondly, a source of in-
fluence (from an external MIDI input - a «MidiInfluencer» - or from the output of
another player) will have to know how to map parts of its MIDI content to the influ-
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ence’s melodic and harmonic dimensions (these influence dimensions will be matched
with the receptive player’s «listening» dimensions). Finally the player must decide
what part of its content is to be effectively played. The user will be able to control
these three mappings in order to set precise interaction schemes.

For example, when creating a corpus from a polyphonic MIDI file (e.g. a string quar-
tet with channels one to four assigned to the different instruments), the user could
want the system to map notes from channel one (e.g. the lead violin) to the player's
melodic listening dimension and notes from channels two to four (e.g. the remaining
instruments) to its harmonic listening dimension. When a player, loaded with the
said corpus, reacts to an incoming influence, it will continuously try to match the
melodic and harmonic dimensions coming from the influence to is listening melodic
and harmonic dimensions as mapped from the corpus. So, for example, if this player
specifies channels two to four as output channels and listens to the melodic influence
of a monophonic input from a musician, this means that the system will attempt to
find slices where the content of channel one (e.g. the lead violin) corresponds to the
input of the musician, while only outputting the content of channel two to four (e.g.
the rest of the quartet). In this case, it would effectively generate an accompaniment
to the input of the musician.

Figure 7: Specifying the melodic (pitch) and harmonic (chroma) dimensions when building
the corpus that will feed the players.

For a more complex input to the system (e.g. multiple musicians, a multichannel
MIDI file, etc.) it is in the same manner possible to set the mapping between the in-
put's MIDI channels and the melodic and harmonic dimensions used to generate in-



A Gentle Introduction to Somax 8

fluences to the system. This can be very useful in systems with multiple players that
are listening to and influencing each other. Returning to the example with the string
quartet corpus, we could create a system with two players: player P1, generating its
improvisation from the melodic part of the corpus (e.g. the lead violin's part) and
another player P2, generating its improvisation from the harmonic part of the same
corpus (e.g. the rest of the quartet). We could now have P1 reactive to the melodic
influence from a live musician; P2 could react to P1 by generating a harmonic tex-
ture coherent with P1's directions; P2 could also influence P1's progression choices
on a harmonic basis, thus competing with the external musician's influence.

Figure 8: Interconnecting the players to an audioinfluencer and one to another, with feed-
back from P2 to P1.

As shown in the above example, it is possible to create highly sophisticated networks
of players influencing each other with detailed control over each player's listening
and output dimensions. However, In simple cases (e.g. a single player with a cor-
pus constructed from a piano MIDI file consisting of one or two channels) it is not
necessary to focus on this particular aspect of the system - the default settings4 will
suffice. While the "ideal" output in this case, as mentioned in the beginning of this
section, would be an identical replication of the input, the discrepancies between
the input and the corpus will almost always ensure that the output is much more
dynamic than a simple replication. Still, being aware of these intricacies will, once
you've familiarized yourself with Somax, be very helpful for configuring the system
for specific situations and improving the quality of the output.

4By default, all channels are mapped to all dimensions in all players and influencers. In this
case, the whole musical content will influence both the harmonic dimension as well as the melodic
(by default, the highest note registered will feed the melodic dimension although you can specify
otherwise, e.g. bass line, etc.)
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A Few Concluding Words

Hopefully, you will by now have an idea of what Somax is, what it does and even
some understanding of how it does it. Some of these concepts may be a bit vague at
the moment, but if you're reading this for the first time you'll certainly know enough
to get started with the interactive tutorials and some initial interaction with So-
max. Inside of the package, you will find the tutorial («tutorial.maxpat»), which
is based on a condensed version of Somax with a single player connected to an audio
influencer and a midi influencer. You will also find the full version of Somax («so-
max2.maxpat»), which allows dynamic creation of players and influencers as well as
dynamic routing between players and/or influencers. Each of the main Somax mod-
ules have a help file (accessible by pressing the «?»-button) which in detail explains
how to use the model, its parametric controls as well as outlines a number of use
cases relevant for that particular module.

If you at a later point want to experiment with more advanced configurations, it
might be useful to return to this text after you've acquired some hands-on expe-
rience with the system, but depending on how you want to use the system, your
current knowledge may be sufficient. If you, on the other hand, want to know even
more about the system and its implementation, you can find a number of articles,
technical reports and other resources at http://repmus.ircam.fr/somax/home.

Annex: Documentation & Tutorials Examples5

Figure 9: Help files are available for all modules and can be accessed by pressing the
«?»-mark in the corresponding Somax module.

5Disclaimer: These pictures might not exactly reflect the current state of the UI - please refer to
the actual documentation inside Max for latest version.
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Figure 10: Each help file contains a number of tabs outlining a particular aspect of rele-
vance for the module.

Figure 11: The tutorial describes how to properly initialize and use the model,
step-by-step.


