
The Somax 2 Software Architecture
Rev. 0.2.0

Joakim Borg

April 19, 2021

Credits

Somax 2 © Ircam 2012-2021

Somax 2 is a renewed version of the Somax reactive co-improvisation paradigm by
G. Assayag. Architecture, UI and code completely redesigned and written by Joakim
Borg in Max and Python.

Legacy:

• Early Java prototype by Olivier Delerue: adding reactivity to OMax.

• Versions 0.1 to 1.3 by Laurent Bonnasse-Gahot: conception of the reactive
memory and influence dimensions model.

• Versions 1.4 to 1.9 by Axel Chemla-Romeu-Santos: separation of the Python
server and object oriented design.

The Somax 2 project is part of the ANR project MERCI (Mixed Musical Reality with
Creative Instruments) and the ERC project REACH (Raising Co-creativity in Cyber-
Human Musicianship).

PI : Gérard Assayag
Music Representation Team
IRCAM STMS Lab (CNRS, Sorbonne University, Ministry of Culture).

repmus.ircam.fr/impro

1

repmus.ircam.fr/impro

Contents

1 Overview 3

2 An Introduction to Somax 4
2.1 The Corpus and the Navigation Model 4
2.2 Interaction . 6
2.3 Constructing the Corpus . 9

3 The Somax Back-end 12
3.1 Overview . 12
3.2 Corpus Builder . 13

3.2.1 Slicing . 14
3.2.2 Trait Analysis . 15
3.2.3 The Corpus . 16

3.3 Runtime Architecture . 16
3.3.1 The Runtime System’s Components 16
3.3.2 Modularity and Dynamicity . 17
3.3.3 Clustering and Classification: the Classifier class 18
3.3.4 Fuzzy Filtering: the MergeAction class 20

3.4 Scheduling and the Generator Module 20
3.4.1 Scheduling . 21
3.4.2 Real-time Scheduling . 22
3.4.3 Offline Scheduling . 23
3.4.4 The Generator Module . 23

4 The Somax Front-end 25
4.1 The Wireless Max Architecture . 26

4.1.1 Additional Updates to the User Interface 28
4.2 The Parallelized Python Architecture . 28

2

Chapter 1

Overview

This report documents the underlying software architecture of the Somax 2 envi-
ronment. It is written with the intention to give a clear overview of the Somax ar-
chitecture for anyone who in some way wishes to extend, contribute, maintain or in
some other way modify the current architecture, as well for any reader who simply
wishes to dissect parts of or the whole architecture to get a better understanding of
its implemented solutions. It is recommended to read [3] before reading this report,
in which the theoretical model of Somax is described, but it’s possible to read them
in any order, as there are plenty of cross-references to relevant sections in both of
these reports.

Chapter 2 in this text summarizes the Somax model from a user perspective
and is intended to give an overview of the system for anyone with limited practical
experience of the Somax system. Chapter 3 describes the back-end of the architec-
ture, written in Python, and outlines the main modules and the relationship between
them, as well as important classes that can be extended to implement new behaviour
to the system. Chapter 4 gives an overview of the front-end of the system, written
in Max, describing the core Max objects of the system. Finally, the user-oriented
documentation and tutorials of Somax, which are written in and integrated into Max
and due to the visual format difficult to parse into text, are included in the appendix
as screenshots.

Do note that this is an early revision of the document and should only be seen
as an outline of the architecture. It should contain any information necessary to add
new classifiers, models, filters and other modular aspects of the system to the code,
but it will not describe every aspect of the architecture nor does it go very deep into
implementation details - for that it will be necessary to read through the entire code
base. Still, it’s intended to serve as a good starting point for such a process, and
reading this document should significantly speed up this endeavour.

3

Chapter 2

An Introduction to Somax

Somax is an interactive system which improvises around a musical material, aiming
to provide a stylistically coherent improvisation while in real-time listening to and
adapting to input from a musician. The system is trained on some musical material
selected by the user, from which it constructs a corpus that will serve as a basis for
the improvisation. The corpus and the output of the system is currently based on
MIDI, but it is able to listen and adapt to both audio and MIDI input from a musician.

The main idea is that Somax should serve as a co-creative agent in the impro-
visational process, where the system after some initial tuning is able to listen and
adapt to the musician in a self-sufficient manner. Of course, the input doesn’t have
to come from a live musician; any type of audio and/or MIDI input works, be it from
an audio file, score editor, synthesizer or DAW. Somax also allows detailed paramet-
ric controls of its output and can even be played as an instrument in its own right.
Also, the system isn’t necessarily limited to a single agent or a single input source
- it is possible to create an entire ensemble of agents where the user in detail can
control how the agents listen to various input sources as well as to each other.

The goal of this text is to provide a brief introduction to Somax and provide
the reader the with fundamental knowledge about how its interaction model works,
which in turn should serve as a basis for making informed choices when tuning and
interacting with the system. For a hands-on introduction to Somax and its user
interface, also see the interactive tutorials that can be found in the same folder as
this document.

2.1 The Corpus and the Navigation Model

As previously mentioned, the Somax system generates its improvisation material
based on an external set of musical material, the «corpus». This corpus can be
constructed from one or multiple MIDI files freely chosen by the user. In contrast
to many other generative approaches, the system does not construct a model that
eventually is independent of the material that was used to train it. Rather, the model
is constructed directly on top of the original data and provides a way to navigate
through it in a non-linear manner. One way of seeing this is to consider that some

4

The Somax 2 Software Architecture

fine-grained aspects of the musical stream are somehow too complex to be modeled,
but will be preserved – to a certain extent – when rereading this musical material.

When presented with some MIDI material, the first step is to segment the musi-
cal stream into discrete units or «slices», which are vertical (polyphonic) segments
of the original midi file and where the duration of a slice is the distance between
two note onsets.1 Each slice is analyzed and classified with regards to a number
of musical features related to its harmony, individual pitches, dynamics, etc., and
these features will serve as the main basis for constructing the navigation model.
This process is in a way similar to that of concatenative synthesis, where an audio
signal is segmented into meaningful units, analyzed and recombined with respect to
the analysis, but in this case (at least for now) based on MIDI data.

Figure 2.1: Constructing a corpus by segmenting midi data into «slices».

From the sequence of slices, the navigation model is constructed through the
detection of common patterns within the musical material. Or more specifically, the
procedure of detecting common patterns is repeated for each feature in the anal-
ysis, effectively resulting in a multilayer representation where each layer roughly
corresponds to one feature, i.e., one layer for harmony, one for pitch, etc.

When a musician interacts with the system, a similar process of segmentation
and multilayer analysis is computed on the input stream, and at each point in time
the result of this process is matched to that of the navigation model, generating
activations, or «peaks», at certain points in the corpus where the input corresponds
to the model. Each peak corresponds to a point in the memory, so the entire set of
peaks can effectively be seen linearly as a one-dimensional representation over the
corpus’ time axis (see figures 2.4 and 2.6 below for examples). The peaks in each
layer are merged and scaled all according to how the system has been tuned, and
finally the output slice is selected based on the distribution of the peaks.

The generated output of this process is an co-improvisation that recombines ex-
isting material in a way that’s coherent with the sequential logic and statistical prop-
erties of the original material while at the same time adapting in real-time to match
the input from the musician. One benefit of this procedure compared to many other
approaches of statistical machine learning is that the system can generate long im-

1In recorded corpora (or any type of non-quantized MIDI) it is rare for any two notes that
are perceived as simultaneous to be exactly simultaneous. Since one goal of Somax is to be
able to maintain and reproduce the original timings within slices as recorded, notes with almost
simultaneous onsets will still be grouped together in a single slice but with their internal timing
offset preserved.

5

The Somax 2 Software Architecture

Figure 2.2: An overview of the steps through which the system generates its output
at each given point in time.

provisations from a small musical corpus, allowing the user detailed control over the
style of the output or even specifically compose pieces of material intended to serve
as a Somax corpora. Of course, it has to be recognized that this method is also one
of the downsides with the model. The process of improvisation is to some extent re-
duced to a smart cut and pasting of pre-existing material, which is a very simplistic
modelling of what improvisation is as a human skill. Still, the output is through the
process of attempting to balance the internal logic of the corpus with the external
logic of the musician often providing a mix of coherency and unexpectedness in a
way that convincingly gives the impression of an active agent in the improvisational
process.

2.2 Interaction

When interacting with Somax, there are three main concepts that are important to
understand: «slices», «influences» and «peaks». A slice, as previously mentioned, is
a short segment of the corpus and serves as the smallest building block of the output
of the system. The slice can be manipulated to some extent (transposed, filtered
with regards to voices/channels, etc.) but will always maintain most fundamental
properties of the original corpus.

An «influence» is in a way conceptually very similar to a slice, but with a vastly
different purpose. When Somax listens to a musician, this musical stream is seg-
mented and analyzed with respect to its musical parameters similarly to how the
corpus was constructed, but with a slightly different set of methods to be able to
operate in real-time. The result of this process are discrete chunks of multilayer
data or «influences», which the system uses to be able to compare the input to the
corpus, where the main purpose of the influence is to act as the guide that deter-
mines the output of the system. The concept of an influence may initially seem like
an implementation detail, but will become increasingly important for more complex
configurations with multiple agents and/or multiple input sources. The main take-
away is that the system cannot listen directly to a musical input stream, but will
need to translate it into influences, and that the process of tuning the listener can
be a very important factor for the quality of the co-improvisation.

Finally, a «peak» is, again, a point in the corpus where the input corresponds to

6

The Somax 2 Software Architecture

the model, or simply a match between an incoming influence and a corresponding
slice that would serve as an output candidate. Each peak has a height, correspond-
ing to a probability (or viability) of that particular slice as an output candidate. Un-
like influences (which are visible in the interface) and slices (which are correlated to
the audible output of the system), peaks are never interacted with directly, they’re
only part of the internal state of the system, but perhaps the most vital part. Each
peak effectively corresponds to a slice in the corpus that could serve as an output
at the current point in time, given the latest influence. Having a reasonable number
of peaks is thus vital for the quality of the output, since having no peaks means that
the output has not taken the musician’s influences into account, and on the opposite
side, in most cases a large number of peaks indicate that the matching is imprecise.

Figure 2.3: While the user doesn’t interact directly with the peaks, they are still
indicated in the user interface. Here, the colors green, red, blue and white corre-
spond to the number of peaks in the feedback layer (more on this later), pitch layer,
harmonic layer and total number of peaks after merge respectively.

To put the concept of peaks in context, let’s dive a bit deeper in how the system
works. While the musician is playing, Somax is at each detected onset segmenting
the input into influences, carrying information about the pitch, harmony, etc. of
what the musician currently is playing. This process is carried out by agents of the
system called «influencers». This information is routed to a «player», which handles
the entire process of matching and generating output. The influence is classified in
multiple layers by the player, as briefly mentioned, where each layer corresponds
to one musical dimension (e.g. harmony, melody) of the influence. In each layer, a
model of the corpus with respect to the particular layer’s musical dimension exists,
and upon receiving an influence, the model will look for sequences in the corpus that
match the sequence of most recent influences from the input, and in each of those
places generate peaks.

The system is also simulating a type of short-term memory inside this model
by not immediately discarding peaks from previous influences, but rather shifting
them along the time axis of the corpus and decaying their height corresponding to
the amount of time that has passed, followed by merging them with the new set of
peaks. This means that sequences continuously matching several consecutive in-
fluences will be more highly prioritized over others, as is illustrated in figure 2.4.
Finally, the peaks from all layers will be merged together into a single set of peaks
which the system will use to probabilistically determine which slice is the best output
candidate2. The result of this multilayer peak merging process is an output that will
not just strictly match the harmony and pitch of the influence but rather improvise
around the most recent history of influences with regards to the corpus, often (de-

2actually, in addition to this, there are a number of parameters that scale the height of the
peaks individually with regard to a number of other musical parameters of choice, but this is
thoroughly documented in the help files in max and will not be discussed here

7

The Somax 2 Software Architecture

Figure 2.4: The process of shifting and decaying previous peaks in a single layer
upon receiving new influences (the process of matching the incoming influence to
the corpus has been omitted for clarity).

pending on how the parameters tuned) selecting peaks matching both the harmony
and/or melody of the input but with an ability and agency to act more freely with
regards to its history. In addition, there’s also a layer which listens to the output of
the system, a feedback layer, that can be used to balance the player’s consistency
with the input with its continuity with its own performance. The balance between
the different layers as well as control over the decay time of old peaks, length of
sequences to match in the memories, etc. are all available in the user interface as
displayed in figure 2.5.

If the concept of peaks isn’t perfectly clear to you after reading this – don’t
worry! Go to the tutorial and start experimenting with the system while keeping one
thing in mind: if the number of peaks is continuously zero or continuously too high3,
this is likely an indicator that the system is working poorly and should be retuned.
If not – you’re probably doing quite well.

Another important aspect of the interaction with Somax is its relation to time.
According to the user’s preference, each player can be assigned to either oper-
ate continuously in time as an autonomous agent, maintaining the pulse and exact
within-slice timings of the original corpus (while possibly adapting to the tempo
and/or phase of the input), or operate reactively, generating output synchronously
as requested by the input. In the continuous case, this means that the player impro-
vises freely over time while still taking the influences of the musician into account,
while in the reactive case, it synchronizes strictly (note-by-note) with the input. Of
course, the player is in the latter mode not strictly limited to the input from where
it receives its influences, but could be connected to a third source of some sort, for
example any type of step-sequencer or other generative approaches, thus giving the
user multiple options for controlling the temporal domain of the system.

3exactly how large "too high" is varies with the type of layer and context, but larger than
10% of the total number of slices in the corpus with no transpositions active could serve as a
reference of "too high" that is valid for most layers and contexts

8

The Somax 2 Software Architecture

Figure 2.5: User interface to control the balance between the dimensions, length of
matching sequences for each dimension as well as decay time of peaks.

2.3 Constructing the Corpus

By default, constructing a corpus is as simple as dragging a MIDI file to the «Cor-
pus Builder» window in the user interface, from which Somax will build an internal
representation with slices, as explained, along with annotations attached to relevant
dimensions. There are however a number of things to consider here. If the input to
a player and its internal corpus were made from similar source of materials, an ideal
response of the player would tend to simply replicate the input. A great deal of vari-
ations or new musical situations will however arise from the discrepancies between
the input and the corpus, and from the different mappings that the user can set for
defining the musical dimensions considered by the player. As we are mostly talking
about MIDI content here (players and MidiInfluencers) this is nothing else than a
mapping between the MIDI channels and the melodic and harmonic dimensions.

This mapping occurs three-fold. Firstly, a player will have to know what sub-
set (what MIDI channels) of its content (its corpus) maps to its internal melodic
or harmonic dimensions, also called its «listening dimensions». Secondly, a source
of influence (from an external MIDI input - a «MidiInfluencer» - or from the out-
put of another player) will have to know how to map parts of its MIDI content to
the influence’s melodic and harmonic dimensions (these influence dimensions will
be matched with the receptive player’s «listening» dimensions). Finally the player
must decide what part of its content is to be effectively played. The user will be able
to control these three mappings in order to set precise interaction schemes.

For example, when creating a corpus from a polyphonic MIDI file (e.g. a string
quartet with channels one to four assigned to the different instruments), the user
could want the system to map notes from channel one (e.g. the lead violin) to the
player’s melodic listening dimension and notes from channels two to four (e.g. the
remaining instruments) to its harmonic listening dimension. When a player, loaded

9

The Somax 2 Software Architecture

Figure 2.6: Three layers of peaks corresponding to different musical dimensions
such as pitch, harmony, feedback, etc., being merged into one set of peaks before
the final scaling and peak selection. Here, all three layers are weighted equally, but
it is possible to balance the contribution from each of the layers.

with the said corpus, reacts to an incoming influence, it will continuously try to
match the melodic and harmonic dimensions coming from the influence to is listen-
ing melodic and harmonic dimensions as mapped from the corpus. So, for exam-
ple, if this player specifies channels two to four as output channels and listens to
the melodic influence of a monophonic input from a musician, this means that the
system will attempt to find slices where the content of channel one (e.g. the lead
violin) corresponds to the input of the musician, while only outputting the content
of channel two to four (e.g. the rest of the quartet). In this case, it would effectively
generate an accompaniment to the input of the musician.

For a more complex input to the system (e.g. multiple musicians, a multichannel
MIDI file, etc.) it is in the same manner possible to set the mapping between the
input’s MIDI channels and the melodic and harmonic dimensions used to generate
influences to the system. This can be very useful in systems with multiple players
that are listening to and influencing each other. Returning to the example with the
string quartet corpus, we could create a system with two players: player P1, gen-
erating its improvisation from the melodic part of the corpus (e.g. the lead violin’s
part) and another player P2, generating its improvisation from the harmonic part of
the same corpus (e.g. the rest of the quartet). We could now have P1 reactive to
the melodic influence from a live musician; P2 could react to P1 by generating a
harmonic texture coherent with P1’s directions; P2 could also influence P1’s pro-
gression choices on a harmonic basis, thus competing with the external musician’s
influence.

As shown in the above example, it is possible to create highly sophisticated net-
works of players influencing each other with detailed control over each player’s lis-
tening and output dimensions. However, In simple cases (e.g. a single player with a

10

The Somax 2 Software Architecture

corpus constructed from a piano MIDI file consisting of one or two channels) it is not
necessary to focus on this particular aspect of the system - the default settings4 will
suffice. While the "ideal" output in this case, as mentioned in the beginning of this
section, would be an identical replication of the input, the discrepancies between
the input and the corpus will almost always ensure that the output is much more
dynamic than a simple replication. Still, being aware of these intricacies will, once
you’ve familiarized yourself with Somax, be very helpful for configuring the system
for specific situations and improving the quality of the output.

4By default, all channels are mapped to all dimensions in all players and influencers. In
this case, the whole musical content will influence both the harmonic dimension as well as the
melodic (by default, the highest note registered will feed the melodic dimension although you
can specify otherwise, e.g. bass line, etc.)

11

Chapter 3

The Somax Back-end

This chapter presents the realization of the theoretical framework described in [3].
In particular, an overview of the back-end of the architecture, which is written in
Python, as well as the implementations of certain algorithms of relevance to the
model is presented here. This chapter describes the architecture that has been in
use since version 2.0 of Somax, which due to the latest1 version 2.3 contains some
slight amendments that will be presented in chapter 4, which describes the updated
front-end, as well as a multithreaded solution for the architecture described in this
chapter. Regardless, what’s presented in this chapter is still relevant for version 2.3
and necessary to understand before reading chapter 4.

3.1 Overview

Figure 3.1: Module diagram over the main modules in the system and the relation-
ship between them.

Figure 3.1 shows the different modules of the system and how they relate to each
other. There are two main branches in this figure, one stemming from the RealtimeServer
module, corresponding to the real-time (i.e. human-machine improvisation) frame-
work, and one stemming from the Generator module, corresponding to the offline

1as of 2021-04-12.

12

The Somax 2 Software Architecture

(i.e. composition-oriented) framework. Both of them share the Corpus module (and
its related CorpusBuilder), which handles the construction of corpora and will be
described in section 3.2, and the Main module, which handles all the internal (run-
time) logic of the system and will be described in section 3.3. The RealtimeServer
and its related UserInterfacemodule will not be specifically described in this chap-
ter, as they were thoroughly described in [7], and the updates to the user interface
since then will be presented in chapter 4. The logic of the RealtimeScheduler mod-
ule, which handles the runtime scheduling of events over time, has however been
significantly updated and will be presented in section 3.4.2.

In the branch stemming from the Generatormodule, the Generator itself will be
described in section 3.4.4 along with its OfflineScheduler, which handles schedul-
ing as an offline process and will be described in section 3.4.3. Note that this branch
has not been actively maintained since 2020-06-30 and has thus not updated with
regards to the changes implemented in chapter 4.

3.2 Corpus Builder

The purpose of the CorpusBuildermodule is to construct the core of the system, the
Corpus, from MIDI and/or audio files. It’s an offline (as opposed to real-time) system
that can be accessed both through a command-line build script as well as through
the real-time user interface.

Another purpose is to achieve the format-agnostic behaviour of the runtime sys-
tem as was described in [3], i.e. to ensure that there are no differences in how the
runtime system handles corpora built from audio files in comparison to corpora built
on MIDI files. However, as we will see in section 3.2.2, this behaviour isn’t fully im-
plemented in the current version of Somax2. For this reason, most of the behaviour
described in this chapter will focus mainly on the MIDI implementation.

When building a corpus from MIDI files, the first step is to create a NoteMatrix
class, which essentially is a matrix where each row correspond to a single MIDI note
and each column correspond to pitch, velocity, channel, relative onset time (mea-
sured in ticks/beats since start of file), absolute onset time (measured in millisec-
onds since start of time), relative duration (measured in ticks), absolute duration
(measured in milliseconds) and tempo. The rows are sorted by their relative onsets,
i.e. their occurrences in time. This format is similar to the format used in [8] with
the addition of tempo. The NoteMatrix class also stores any MIDI control changes
and meta messages, as well as information regarding the original MIDI tracks, to
allow reconstruction of the original MIDI file.

PITCH VELOCITY CHANNEL ONSET ONSET DURATION DURATION TEMPO
(tick) (msec) (tick) (msec)

Figure 3.2: Columns of the MidiMatrix class.

2As of 2021-04-12.

13

The Somax 2 Software Architecture

3.2.1 Slicing

Once the NoteMatrix is constructed, the next step is to determine the temporal
boundaries for each slice, i.e. slicing. This is done differently for audio and MIDI
as described in [3] - per beat for audio and per note for MIDI. In the case of MIDI
file(s), to achieve the behaviour outlined in chapter 2.1, algorithm 1 is used. In
this algorithm, the NoteMatrix is denoted N , where Ni denotes the note at row i

and .absolute_onset, .relative_onset, etc. denote the columns corresponding
to indices in figure 3.2. The algorithm is iterating over all MIDI notes and creating
a new slice for any note whose onset is more than ε ∈ Z+ millseconds from the
previous note, otherwise appending the note to the current slice. The parameter ε is
very important, as it will ensure that notes occurring sufficiently close (for example
appoggiaturas and other articulation) are treated as part of the same slice, which
both will be important for analysis later as well as maintaining the original rhythmic
feel of the file without quantization. Another important aspect of the algorithm is
line 14, which results in that any note in the previous slice that overlaps into the new
slice will be added as well, and thus have an onset Ni.relative_onset that may be
earlier than the slice onset du. This will play an important role when scheduling
slices, which is be described in section 3.4.1. The result of the slicing procedure is
the Corpus class with all parameters set apart from its Traits.

Algorithm 1 Slicing a NoteMatrix N into a Corpus C
1: u = 0
2: C = {}
3: θ

(N)
u = N0

4: t
(C)
u = N0.relative_onset

5: ζu = N0.tempo
6: τu = N0.absolute_onset
7: for i = 1 to |N |− 1 do
8: if Ni.absolute_onset > τu + ε then
9: du = Ni.relative_onset −t

(C)
u

10: δu = Ni.absolute_onset −τu

11: S(C)
u =

!
t
(C)
u , du, ζu, τu, δu, θ

(N)
u

"

12: C = C ∪
!
S(C)
u

"

13: u = u+ 1

14: θ
(N)
u =

!
n | n ∈ θ

(N)
u−1, n.relative_onset+ n.relative_duration > du−1

"

15: t
(C)
u = Ni.relative_onset

16: ζu = Ni.tempo
17: τu = Ni.absoulute_onset
18: else
19: θ

(N)
u = θ

(N)
u ∪ {Ni}

20: end if
21: end for

14

The Somax 2 Software Architecture

3.2.2 Trait Analysis

In parallel with the slicing, two lowpass-filtered pseudo-spectrogram are computed
from the NoteMatrix in the Spectrogram class, one for the foreground (melodic)
channels and one for the background (harmonic) channels, which are both specified
by the user. If no channels are specified, the foreground and background spectro-
gram will be computed from the entire set of channels and thus be identical. The
procedure for computing the pseudo-spectrogram is the same as in [7], with the
addition of the filter being interchangeable to allow different types of filtering, as
well as no filtering at all. From these spectrogram, two pseudo-chromagram are
computed in the Chromagram class, again one for the foreground channels and one
for the background channels. For audio, these are computed directly from the audio
data.

Once the Spectrogram and the Chromagram have been computed and the slicing
procedure to create the Corpus is completed, the trait analysis begins. The trait
analysis is dynamic, which means that it will import any class in the code base ex-
tending the AbstractTrait stereotype (see figure 3.3) and call the analyze function
on each slice in the corpus.

class AbstractTrait(ABC):
@classmethod
@abstractmethod
def analyze(cls, event: CorpusEvent, audio_data: np.ndarray,

fg_spectrogram: Spectrogram, bg_spectrogram: Spectrogram,
fg_chromagram: Chromagram, bg_chromagram: Chromagram,

**kwargs):
pass

Figure 3.3: The AbstractTrait stereotype, which is used to analyze all traits.

In the current state of the system, the following traits have been implemented:

Notes θ(N) The midi notes contained in the current slice, as defined in algorithm 1.
Note that at the moment, no corresponding values exist for audio data, which
in other words means that the model isn’t truly format-agnostic yet. Ideally,
this could be solved by estimating these values with a polyphonic f0-estimator,
for example [9].

Top Note θ(PT) ∈ Z[0,127] This value is simply the note number of the highest note
in each slice, i.e.

θ(PT)
u =

!
Ni.pitch | Ni ∈ θ(N)

u ∧Nj ∈ θ(N)
u : Ni.pitch ≥ Nj.pitch

"
. (3.1)

Onset Chroma θ(C) ∈ R12×2, which is the column in the Chromagram class (both
foreground and background) at the index corresponding to the absolute onset
of the slice, i.e.

θ(C)
u =

#
C

(fg)
: ,τu C

(bg)
: ,τu

$
(3.2)

15

The Somax 2 Software Architecture

where C denotes the Chromagram class as constructed in the previous step.

3.2.3 The Corpus

With the trait analysis completed, the Corpus class is finalized. Once again, it’s
important to emphasize the two purposes of the Corpus class: to (a) abstract the
data of the audio/midi file(s) into high-level data that can be used for classification
and (b) to create a format-agnostic object. The latter means that from this point,
all raw MIDI and audio data as well as the spectrogram and chromagram will be
thrown away. For MIDI data, this isn’t a problem, as the Notes trait θ(N) contains
all the MIDI data - in fact, the Corpus and NoteMatrix are interchangeable, thus
allowing re-export of the Corpus back to MIDI. For audio data, only a reference
to the original file will be kept, thus the raw audio data corresponding each slice
S(C)
u can be reproduced by its absolute onset τu and its absolute duration δu. This

compact data format also allows exporting the corpus as a JSON-file for quickly
reloading previously built corpora.

Finally, while the CorpusBuilder module is the main way to construct a Corpus,
it’s not the only way. As we will see in section 3.3, a Corpus can be constructed from
another Corpus during a real-time performance, and as we will see in section 3.4, it
can also be generated from other corpora offline.

3.3 Runtime Architecture

The runtime architecture handles all the influencing and output generation, it’s ba-
sically the core of the system. While most of it already has been explained in [7],
some key aspects have been left out due to the article’s condensed format, as well
as some critical changes made since the article was written. For this reason, the
design of the architecture and the relation between the algorithms described in [3]
and the components of the system will be reiterated in the following section.

3.3.1 The Runtime System’s Components

The architecture of the system can be seen in figure 3.4. At the root of the system is
the Player class, through which all interaction with the system occurs. At the oppo-
site end, at what could be considered the core of the system, is the Atom, where each
Atom corresponds to one of the r = 1, . . . , R layers described in [3]. The Atom con-
tains one Classifier instance, corresponding to a classifier Θ(r), one MemorySpace
instance, corresponding to a model M(r) and one ActivityPattern instance, which
handles storing, shifting, decaying and concatenation of peaks P (r) as described
in [3].

Inbetween the Player and the Atoms is the StreamView class. Each Player con-
tains any number of StreamViews, which in turn is a recursive structure containing
any number of StreamViews and any number of Atoms, effectively forming a tree
structure where the Player correspond to the root of the tree, each StreamView cor-
respond to a branch and each Atom correspond to a leaf of the tree. Each Atom and
StreamView is assigned a (by the user controlled) weight α(r) and at each branch in
the tree, merging and user-controlled filtering Γ are performed by the MergeAction

16

The Somax 2 Software Architecture

Figure 3.4: Simplified class diagram over the main components of the runtime ar-
chitecture.

class. Finally, once all peaks have been merged up through the tree to the Player
class, a final set of (user-defined) MergeActions are performed, and from that set of
peaks, the output is selected by the PeakSelector class.

There are three main states in the runtime architecture, each roughly corre-
sponding to the three first chapters of [3]: initialization (i.e. constructing the cor-
pus), influence and output. In the initialization state, which is only performed once,
the user defines the runtime architecture, i.e. the tree structure, which Classifiers
(and MemorySpaces and ActivityPatterns) to use in each layer, as well as the
MergeActions to use at each branch. This is also where the Corpus is built (or
loaded from a previously built Corpus), clustered, classified and modelled in each
of the Atoms. Note that while this step is mandatory for the initialization, the clus-
tering, classification and modelling can be recomputed with different parameters in
each of the Atoms while the system is running.

The two other processes, influence and output, takes turns continuously while
the system is running and operate in opposite directions, where the influence state
flows from the Player through the architecture, computing each of the steps de-
fined in the chapter «Influence» of [3], ending in each of the ActivityPatterns
where the generated peaks are stored, while the output process gathers all the gen-
erated peaks in each of the ActivityPatterns and merge them towards the Player,
generating the output according to the steps in the chapter «Generate» of [3].

3.3.2 Modularity and Dynamicity

Similarly to the AbstractTrait stereotype defined in section 3.2.2, each of the com-
ponents labelled with the abstract keyword in figure 3.4 can be substituted using
each class’ corresponding stereotype. For the MemorySpace, ActivityPattern and

17

The Somax 2 Software Architecture

class Parameter(HasParameterDict):
def __init__(self, default_value: Ranged, min_value: Ranged,

max_value: Ranged, type_str: str,
description: str, setter: Optional[Callable]):

...

Figure 3.5: The constructor for the Parameter class.

class AbstractClassifier(ABC):
@abstractmethod
def cluster(self, corpus: Corpus) -> None:

pass

@abstractmethod
def classify_corpus(self, corpus: Corpus) -> List[AbstractLabel]:

pass

@abstractmethod
def classify_influence(self, influence: AbstractInfluence) -> AbstractLabel:

pass

Figure 3.6: Stereotype for implementing a Classifier.

PeakSelector classes, this behaviour is simply for future use and their stereotypes
will not be discussed in detail. In this work, the stereotypes for the Classifier class
and the MergeAction class are of greater importance, as a number of each have been
implemented and will be described in section 3.3.3 and section 3.3.4 respectively.

Finally, among the novelties added to the system are the Parametric and Parameter
classes (these are not displayed in figure 3.4, but all of the classes in the figure ex-
tends the Parametric class). From a software engineering perspective, addressing
a parameter somewhere inside dynamic tree can be difficult, especially when com-
municating with an external client over a string-based protocol. The purpose of the
Parametric class is to expose any Parameter to the user interface. In practice, this
means that any class that extends the Parametric class can declare any of its user-
controlled parameters as a Parameter class, and it will be immediately available in
the user interface with a name, type, range, description and optional setter function.
The constructor for the Parameter class can be seen in figure 3.5.

3.3.3 Clustering and Classification: the Classifier class

Clustering and classification is handled by the Classifier class. Each classifier is
implemented by extending the AbstractClassifier stereotype shown in figure 3.6,
implementing the functions cluster, classify_corpus and classify_influence.
In practice, not all Classifiers rely on the Corpus for clustering - in fact some
Classifiers don’t implement the cluster function at all.

In the current state of the system, these classifiers have been implemented:

18

The Somax 2 Software Architecture

Top Note Classifier Θ(PT), which, as the trait θ(PT) already is a discrete parame-
ter, simply is an identity classifier, defined so that

l = Θ(PT)
%
θ(PT) | C

&
= θ(PT), l ∈ Z[0,127], (3.3)

in other words, a Classifier without any clustering and thus independent of
C.

Pitch Class Classifier Θ(P12), defined so that

l = Θ(P12)
%
θ(PT) | C

&
= θ(PT) mod 12, l ∈ Z[0,11]. (3.4)

Again, a Classifier without any clustering and thus independent of C.
SOM Chroma Classifier Θ(CSOM) A classifier of onset chroma vectors based on the

original Somax implementation as defined in [6]. The clustering was computed
using a self-organizing map on a matrix X of 3600 chroma vectors, i.e. X ∈
R3600×12, returning a set of labels l(X) ∈ Z3600

[0,121]. The origin of these 3600
chroma vectors, as well as the exact parameters for the self-organizing map
has unfortunately been lost, but this classifier will serve as an important base
case when comparing different chroma classifiers.

As the self-organizing map itself can’t be used for classifying corpora or influ-
ences, this classifier will simply select the label of the row in X minimizing
the distance to the chroma vector θ(C) ∈ R12 to classify, i.e.

l = Θ(CSOM)
%
θ(C) | C

&
= l

(X)
i (3.5)

where

i = argmin
x∈X

‖x− θ(C)‖2 (3.6)

and l
(X)
i denotes the label in l(X) at index i.

Absolute GMM Chroma Classifier Θ(CAGMM) A classifier of onset chroma vectors
based on a Gaussian Mixture Model clustering. The classifier uses the same
matrix X ∈ R3600×12 as the SOM Chroma Classifier for clustering, but with

a user-defined number of clusters K. The initial clustering Θ
(C|GMM|)
i=0 is com-

puted using K-means [4] with K clusters and the EM-algorithm iterated for
(user-defined) I iterations. The classification is defined as x

l = Θ
(CAGMM)
I

%
θ(C) | C

&
= argmax

k∈1...K
p
%
C

(k)
I | θ(C)

&
(3.7)

where C
(k)
I denotes cluster k after I iterations. Compared to the SOM Chroma

Classifier, the main benefit with this is the variable number of clusters. Having
a variable number of matches means that the precision of the classifier can be
adjusted (where a higher number of clusters would mean a higher precision) at
the cost of number of matches in the corpus (where a high number of clusters
in most cases will result in less matches). This means that each performance
can be parametrically tuned with regards to how well the corpus matches the
input.

19

The Somax 2 Software Architecture

Relative GMM Chroma Classifier Θ(CRGMM) This classifier is identical to the Ab-
solute GMM Chroma Classifier, but uses the data in corpus C to construct the
matrix X, and thus uses C for both clustering and initial classification. In
other words, we have

X =

'

(()

θ
(C)
1

...

θ
(C)
U

*

++, , (3.8)

X ∈ RU×12. This is the first classifier where the clustering is input depen-
dent. Compared to the Absolute GMM Chroma Classifier, having a clustering
dependent on the corpus can potentially result in very poor matches if the
corpus is harmonically dissimilar to the input, as the classification algorithm
will simply select the match with the highest probability (which then may be
very low). But on the other hand, if the corpus and the input are harmonically
similar, the precision in the matches may be much higher, even with a low
number of classes, thus (ideally) resulting in a high number of matches with
high precision.

3.3.4 Fuzzy Filtering: the MergeAction class

The scaling of individual peaks with regards to parameters of the peaks or their
related slices S(C)

u is handled by the MergeAction class, which only requires imple-
mentation of the merge function. The stereotype for this class is shown in figure 3.7,
and there are currently two such fuzzy filters that the system makes use of:

Phase Modulation Γ(φ) which scales the peaks with regards to their current phase/-
position in the beat so that peaks occurring at phase close to the current phase
of the output time t(Y) are emphasized and vice versa,

Γ(φ) (pi) =
#
t
(C)
i φiyi

$T
∀pi ∈ Pw (3.9)

where

φi = exp
#
cos

%
2π

%
t(Y)
w − t

(C)
i

&&
− 1

$
, φ ∈ R (3.10)

Next State Modulation Γ(+) which scales peaks close in time to the previously
output slice S(Y)

w−1 by a constant α, i.e. for some ε ∈ R

Γ(+)(pi) =

-
.

/

#
t
(C)
i αyi

$T
if

000t(C)i − t
(C)
w−1

000 < ε

pi otherwise
∀pi ∈ Pw. (3.11)

3.4 Scheduling and the Generator Module

While the internal algorithms of the system has been thoroughly described by now,
it has not yet been presented in context as a key aspect is missing - how input and

20

The Somax 2 Software Architecture

class AbstractMergeAction(Parametric):
@abstractmethod
def merge(self, peaks: Peaks, time: float,

history: ImprovisationMemory,
corpus: Corpus = None, **kwargs) -> Peaks:

pass

Figure 3.7: Stereotype for implementing a MergeAction.

output is handled over time, i.e. scheduling. The following sections describe the
Scheduler module, which determines how influences and triggers are scheduled
to generate actual MIDI/audio output and the modes that the scheduler operate
under. Section 3.4.4 describes the Generator module, which is using the scheduler
to generate new corpora offline.

3.4.1 Scheduling

The main role of the Scheduler is to handle triggers to appropriately queue and
output slices S(Y)

w as they unfold over time, similar to a timeline in a DAW but where
the events in the timeline are continuously generated by the system itself. The
Scheduler has a running tick t(Q), a tempo ζ(Q) and a queue of scheduled events E ,
where each event has timestamp t

(Y)
w and a predefined behaviour upon triggering,

which depends on the event type. An event will be triggered when its tick t
(Y)
w is

greater than or equal to the scheduler tick t(Q). There are currently seven types of
scheduled events:

TempoEvent: Sets the tempo of the scheduler to its value when triggered.

MidiEvent: Outputs a stored MIDI note on or note off message when triggered.

AudioEvent: Outputs an interval [τstart, τend] (in milliseconds) in the audio file to play
over a duration determined by a tempo factor fζ , defined as

fζ =
ζ
(Y)
w

ζ(Q)
(3.12)

where ζ
(Y)
w denotes the tempo of the audio event’s corresponding slice S(Y)

w .

CorpusEvent: Outputs a slice S(Y)
w when triggered. As we will see in sections 3.4.2

and 3.4.3, this behaviour seems to overlaps with the behaviour of MIDI and
audio events, but they are never used in combination.

InfluenceEvent: Calls the influence process for a given Player with its stored
value.

TriggerEvent: Corresponding to an event in the trigger stream Y, which when
triggered calls the generate process. The output of the generate process
is sent back to the scheduler and queued, either as a CorpusEvent or as a
MidiEvent/AudioEvent, depending on the type of scheduler, as we will see
in the following two sections. In practice, this means that all MidiEvents,
AudioEvents and CorpusEvents are queued only through a TriggerEvent.

21

The Somax 2 Software Architecture

There are two different ways to add TriggerEvents to the scheduler, which
in turn depends on the scheduler’s mode, which may be either Automatic or
Manual. The Manual mode means that TriggerEvents are added manually,
which in practice means that they are added by the system after every in-
fluence call. This is useful to create a note-by-note interaction between the
system and the input. The Automatic mode means that new TriggerEvents
are automatically queued after a duration corresponding to the generated out-
put slice S(Y)

w , i.e. for a trigger Yi, a new trigger Yi+1 is added at t(Y)
i+1 defined

as

t
(Y)
i+1 = t

(Y)
i + d(Y)

w , (3.13)

where d
(Y)
w denotes the duration of the generated slice. Note that the retrig-

gering uses the time of the trigger t(Y) rather than the time of the scheduler
t(Q) when queueing new triggers to avoid drifting.

In practice, the scheduler is divided into two different classes, the RealTime-
Scheduler, which will be described in section 3.4.2, and the OfflineScheduler,
which will be described in section 3.4.3. As we will see, these two have very little in
common apart from the handling of TempoEvents and TriggerEvents.

3.4.2 Real-time Scheduling

The role of the RealTimeScheduler is in many ways similar to the of the audio thread
in an audio plugin. It’s behaviour is that of a high-priority thread that’s continuously
polled at a millisecond interval, at each poll i updating its tick so that

t
(Q)
i = t

(Q)
i−1 +∆τi

ζ(Q)

60
, (3.14)

where ∆τi denotes the number of milliseconds that have passed since the last poll,
and triggering any event w whose tick t

(Y)
w ≥ t

(Q)
i .

When the system is used as a real-time framework, the scheduler is based on
the asyncio Python module, where influencing and setting parameters, as well as
queueing new TriggerEvents and TempoEvents, is handled by a different thread
corresponding to the ui thread in an audio plugin. The asyncio module is however
not truly multithreaded, but rather handles ui calls in-between polling scheduler.
These ui calls are blocking the thread and completes its operation before the next
poll is called, hence eliminating any risk of tearing. While such a solution would not
be acceptable for a real audio thread as the ui calls may delay the audio thread up
to a few milliseconds, it’s not a problem when handling an event-based stream as
the delays incurred by this process generally are too small to be perceivable.3

Once a TriggerEvent has generated an output slice S(Y)
w , the real-time scheduler

will extract its content as an AudioEvent for audio corpora or as a set of MidiEvents
for MIDI corpora. For MIDI notes Nw, great care must be taken when determining
note ons and note offs, since we according to the slicing procedure would add a

3Do note that this behaviour is a simplification of the scheduling process occurring in each
Player. As will be seen in chapter 4, Somax is using an actual multithreaded solution, but the
behaviour of each individual thread is still in accordance with the description in this chapter.

22

The Somax 2 Software Architecture

single note to multiple slices. In practice, we generate note ons at t(Y)
w for any note

ni ∈ N (on)
w , where the latter is defined as

N (on)
w = N (Y)

w \ N (from)
w−1 (3.15)

and note offs at t(W)
w + nj.duration for any note nj ∈ N (off)

w , where the latter is
defined as

N (off)
w =

%
N (Y)

w \ N (from)
w

&
∪
%
N (from)

w−1 \ N (to)
w

&
(3.16)

where

N (to)
w =

!
n | n ∈ N (Y)

w : n.onset < t(Y)
w

"
(3.17)

and

N (from)
w =

!
n | n ∈ N (Y)

w : n.onset+ n.duration > t(Y)
w + d(Y)

w

"
. (3.18)

When using the system in real-time, the RealTimeScheduler doesn’t handle
InfluenceEvents or CorpusEvents. The former are handled directly by the ui thread
and the latter are converted to MidiEvents or AudioEvents.

3.4.3 Offline Scheduling

The OfflineScheduler is unlike the RealTimeScheduler designed for a single thread,
where any operation stems from the scheduler itself while running. It is also not con-
tinuously polled, but iterating over all the events E in the scheduler in order (where
the iterator is being updated after each cycle to allow re-queueing of TriggerEvents)
until the queue is empty. At each step i in the iteration, the tick t

(Q)
i is updated so

that

t
(Q)
i = min

t(Y)∈E
t(Y) (3.19)

where once again all events w whose tick t
(Y)
w ≥ t

(Q)
i are triggered in order, sorted by

tick position as the first axis and type by the second, to ensure that InfluenceEvents
are triggered before TriggerEvents, should they occur simultaneously.

Unlike the RealTimeScheduler, the OfflineScheduler will not handle Midi-
Events or AudioEvents at all - it will output the slice S(Y)

w corresponding to the
CorpusEvent directly, effectively producing a new Corpus. But since the Corpus
class is interchangeable with its MIDI and/or audio data, the generated result could
easily be converted to a MIDI/audio file.

3.4.4 The Generator Module

The Generator is a separate module completely detached from the MaxMSP envi-
ronment and the real-time system, and is designed around the OfflineScheduler
to quickly generate new corpora. Similarly to section 3.3, the first steps when cre-
ating a Generator are to define and initialize the architecture and load a Corpus,

23

The Somax 2 Software Architecture

class Generator(ABC):
def __init__(self, source_corpus: Corpus, influence_corpus: Corpus,

use_optimization: bool, gather_peak_statistics: bool,
name: Optional[str], **kwargs):

...

def run(self) -> Tuple[Corpus, Optional[PeaksStatistics]]:
...

@abstractmethod
def initialize(self, **kwargs) -> None:

pass

Figure 3.8: The signature of the constructor and run function as well as the
initialize stereotype of the Generator class

which we from here on will call the source corpus. The Generator itself is an ab-
stract class where the definition of the architecture is done by extending the class
and implementing the initialize function, as can be seen in figure 3.8. But as the
figure shows, there Generator requires two corpora in the constructor and returns
a third corpus from the run function. These three correspond to the three main
processes of Somax: a source corpus C, an influence corpus K (instead of an influ-

ence stream as was defined it in [3]) and an output corpus O =
!
S(Y)
1 , . . .S(Y)

W

"
,

constructed from the output slices S(Y)
w . In other words, it will build the archi-

tecture and source corpus C as usual, but it will also build an influence corpus K
using the same procedure. Each of the slices S(K)

v of the latter are then queued
as InfluenceEvents in the OfflineScheduler at their corresponding ticks t

(K)
v , to-

gether with a TempoEvent constructed from the slice’s tempo ζ
(K)
v and (if the mode

is set to Manual) a TriggerEvent.
When the run function is called, the Generator will iterate over all events in the

OfflineScheduler for as long as there are InfluenceEvents left in the queue and
then stop, effectively producing a corpus O with the same duration (and hopefully
same traits) as the influence corpus K, using the slices of the source corpus C.

The Generator module also allows the user to gather statistics about the peaks
at each step in the iteration, which can be useful for evaluating the usefulness of the
architecture from a performer’s perspective.

24

Chapter 4

The Somax Front-end

The user interface of Somax, which was discussed briefly in [7], is implemented in
the Max programming language. It was originally designed as a thin client, where
all of the computation is handled on the Python server (apart from the real-time
signal processing required for audio signals used as influences). As most readers
likely are aware of, Max is a visual programming language where the default means
of programming is by connecting objects using patch cords. In most cases, the
readability of a Max program is determined by how easy it is to follow the cords
throughout the program. The Somax user interface was originally designed with this
in mind to promote readability on both micro and macro levels of the program, but is
from version 2.3 using wireless communication (send and receive) between objects
on a macro level. While this approach to some extent obscures the readability (or at
least the global signal flow) of the system, the benefits are manifold. First of all, the
architecture becomes easier for the user to extend - adding new players can be done
with a single keypress - and objects can dynamically select which other objects to
interact with without having to modify the architecture. This new architecture and
its implications will be presented in section 4.1.

Another purpose of this redesign is to make the system integrable into Ableton
Live. Somax can as a system be described as a «function» that reads one or multiple
audio and/or MIDI streams and outputs one or multiple MIDI streams. For com-
patibility with Live, this has to be split into several smaller objects based on Live’s
syntax of «instruments» (function that reads one MIDI stream and outputs one au-
dio stream), «audio effects» (function that reads one audio stream and outputs one
audio stream) and «MIDI effects» (function that reads one MIDI stream and outputs
one MIDI stream). Using a wireless architecture, this goal is possible to achieve for
Somax. Do note that the wireless paradigm presented in this report is just a prereq-
uisite for the Max for Live version of Somax; the latter it is still work in progress and
will be presented in a future report.

To accommodate these changes, the Python back-end has been updated to dras-
tically increase the performance when using multiple players. This will be presented
in section 4.2.

25

The Somax 2 Software Architecture

4.1 The Wireless Max Architecture

The Max architecture currently consists of four main objects: AudioInfluencer,
MidiInfluencer, Player and Server. The AudioInfluencer and MidiInfluencer
read a continuous stream of audio or MIDI data respectively and perform the slicing
and trait analysis steps described in [3]. In the user interface, the data resulting
from this process is called an influence, which is routed to a player (and its Python
back-end model) to compute the following steps in the influencing process. The
Player object is essentially a client for the corresponding Player class in the Python
back-end, which handles all of the runtime architecture described in section 3.3. Fi-
nally, the Server object handles communication with the Server class in the Python
back-end, which is the root of the entire system, handling all players as well as the
transport (i.e. the master clock of the event scheduling). So far, this is identical to
the architecture presented in [7], apart from the fact that that there is no routing
object in the middle, which is now rather handled wirelessly and will be described
further down in this section.

Figure 4.1: Generalized interaction model of the Somax user interface.

Figure 4.1 depicts the interaction model of the user interface on a large-scale
level. Each input is sent into an influencer, which computes discrete influences
from the data and forwards it to one or multiple players. An influencer may send
influences to multiple players and a player may receive influences from multiple
influences (hence, a many-to-many relationship). Each player generates an output
MIDI stream based on said influences, which is also sent into an influencer to allow
further influencing of other players with the generated output.

A simplified diagram over the entire wireless system can be seen in figure 4.2.
Here we see that the only objects that do not have corresponding objects in the
Python back-end are the influencers. Each influencer is given a name by the user,
which the system ensures is unique, and this name will serve as the address on
which the influencer sends its influences to players.

The Player object in Max was originally designed as a thin client around the
Player class in the back-end, but has with this update been given two additional
roles: routing and re-influencing. The routing module of the player (whose user
interface is depicted in figure 4.3) lists all available influencers and players and
receives influences based on what the user selects. The player also contains a
PlayerInfluencer, which is a simple variation on the MidiInfluencer that also
accepts certain metadata from the back-end to optimize performance and reduce
latency, and give the user more detailed control when routing influences between
players.1 When initialized, the Player is assigned a unique (user-controlled) name
as well as two unique OSC ports - one for receiving one for sending messages to the

1More details on advanced routing with the PlayerInfluencer can be found in [?].

26

The Somax 2 Software Architecture

Figure 4.2: Interaction model for the wireless architecture. Dotted arrow lines
denote some sort of "wireless" communication between objects while filled arrow
lines denote their traditional UML relations (composition, generalization) and cor-
responding cardinality.

corresponding Player class. An instantiation message is sent to the Server object,
which creates and owns the Player in the back-end, but once communication is es-
tablished, the Player object and Player class communicate influences, MIDI output
and parameter changes directly over said OSC addresses.

Figure 4.3: The routing module of each player. Here, all influencers and other
players are listed, and the user can select whether to listen to pitch influences (P),
onsets (O) and/or chroma influences (C) from that particular source. As chroma
influences are continuous, it’s also possible to mix chromas from different sources.
The point of segmentation is determined by the chroma onset (CO).

Finally, the Server object, which directly corresponds to the Server class (in
Python) and the root of the entire system, is also initialized with unique receive and
send OSC ports as well as a unique name. In addition, it also contains the beat
tracker module [5], a front-end module for the corpus builder , as well as a number

27

The Somax 2 Software Architecture

of utilities for managing and recording the MIDI output. The role of the Server class
will be described in detail in section 4.2.

4.1.1 Additional Updates to the User Interface

In addition to the changes related to the wireless architecture, the user interface
of each individual component has been redesigned from scratch. A Model-View-
Controller design pattern has been applied to ensure that no inconsistencies exist
between the Python back-end (model) and the Max user interface (view and con-
troller). Each object has been remodelled so that multiple views/controllers may
exist for the same data - one compact view, listing only the most vital parameters
that are necessary to give the performer an overview while interacting with the sys-
tem, and one full view where all parameters are available. This update also includes
detailed (user-oriented) documentation of each object as well as a tutorial.

4.2 The Parallelized Python Architecture

Due to the changes presented in the previous section, the architecture of the Python
back-end, originally implemented in a concurrent (but single core) manner, had to be
updated to a parallel multicore solution. As shown in [3], a generate-influence cycle
for a single player can in extreme cases take 30 milliseconds or more. In the case of
a single player, this means 30 milliseconds of latency for the player, which of course
is not ideal, but it will not break the perception of pulse assuming that the latency
stays fairly constant. This is however not the case for multiple players operating
on a single core. For example, if all three players receives their influence/onset
messages simultaneously, the delay between sending the message and the output
of the last player can be up to 90 milliseconds, while if influence/onset messages
overlap perfectly, the delay for each player is only 30 milliseconds. This creates a
latency interval for each player varying between 30-90 ms under even load (in this
particular case, increasing linearly with each added player), effectively breaking all
perception of pulse in the generated content.

Figure 4.4: Simplified class diagram over the new parallelized architecture.

In the new architecture, shown in figure 4.4, which combines the concurrent
strategies of the previous implementation with parallelization, each Player runs in
its own Process [2], thereby not impacting each other in terms of performance,
as long as there are fewer players running than free cores on the system. The
Server is running two coroutines using the asynciomodule [1], where one coroutine

28

The Somax 2 Software Architecture

continuously receives messages from the Max Server object over OSC and the other
coroutine continuously updates the time of the Transport class and forwards this
to each Player. Do note that there are two different Transports available in figure
4.4 - the MasterTransport and the SlaveTransport. In the former case, the time
(measured in ticks t ∈ R+ as in previous sections) is updated with each callback so
that at update i = 0, 1, . . . ,

ti = ti−1 +∆T · ζi−1

60
, (4.1)

where ∆T ∈ R+ denotes the time (in seconds) elapsed since the last callback and
ζi−1 denotes the tempo of the scheduler at the previous time step. In the case of the
SlaveScheduler, the idea is that the time is updated from an external source, for
example the master clock of Max or the current time from Ableton Live, i.e.

ti = t
(ext)
i . (4.2)

These messages are sent over OSC through the Server object (in Max) and the
second coroutine of the Server class is therefore unused in this case. The time ti is
at each update i sent to all Players of the Server using a pipeline.

The Player class is also running two coroutines; one coroutine continuously
receiving messages from the Max (parameter updates, influences and onsets) and
one coroutine continuously receiving message from the pipeline connected to the
Server. As in the earlier architecture, these messages are queued through the
Scheduler, which was described in chapter 2.1, with the only exception that each
Player now has its own Scheduler, instead of a shared one for all Players. Also,
if the user has set a specific Player as the «Tempo Master», i.e. the source from
which the Transport should receive its tempo, this data is returned to the Server
through another pipeline and updated accordingly, e.g. for a tempo ζ

(C)
w returned by

the Player after update ti, the tempo of the Transport is updated so that

ζi = ζ(C)w . (4.3)

29

Bibliography

[1] asyncio — Asynchronous I/O. https://docs.python.org/3/library/asyncio.
html. Accessed: 2021-03-30.

[2] multiprocessing - Process-based parallelism. https://docs.python.org/3/
library/multiprocessing.html. Accessed: 2021-03-30.

[3] The Somax Theoretical Model.

[4] Christopher M Bishop. Pattern recognition and machine learning. springer,
2006.

[5] Laurent Bonnasse-Gahot. Donner à OMax le sens du rythme: vers une improvi-
sation plus riche avec la machine. École des Hautes Études en sciences sociales,
Tech. Rep, 2010.

[6] Laurent Bonnasse-Gahot. An update on the SOMax project. Ircam-STMS, Tech.
Rep, 2014.

[7] Joakim Borg. Somax 2: A Real-time Framework for Human-Machine Improvisa-
tion. Internal Report - Aalborg University Copenhagen, 2019.

[8] Tuomas Eerola and Petri Toiviainen. Midi toolbox: Matlab tools for music re-
search. Department of Music, University of Jyvaskyla, 2004.

[9] Justin Salamon and Emilia Gómez. Melody extraction from polyphonic music
signals using pitch contour characteristics. IEEE Transactions on Audio, Speech,
and Language Processing, 20(6):1759–1770, 2012.

30

https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/multiprocessing.html

