
Automatic Verification of Conformance of Firewall Configurations
to Security Policies

Nihel Ben Youssef
Higher School of Communication of Tunis, Tunisia

nihel.benyoussef@gmail.com

Adel Bouhoula
Higher School of Communication of Tunis, Tunisia

adel.bouhoula@supcom.rnu.tn

Florent Jacquemard
INRIA & LSV (CNRS/ENS Cachan), France
florent.jacquemard@lsv.ens-cachan.fr

Abstract

The configuration of firewalls is highly error prone and
automated solution are needed in order to analyze its cor-
rectness. We propose a formal and automatic method for
checking whether a firewall reacts correctly wrt a security
policy given in an high level declarative language. When
errors are detected, some feedback is returned to the user in
order to correct the firewall configuration. Furthermore, the
procedure verifies that no conflicts exist within the security
policy. We show that our method is both correct and com-
plete. Finally, it has been implemented in a prototype of ver-
ifier based on a satisfiability solver modulo theories (SMT).
Experiment conducted on relevant case studies demonstrate
the efficiency and scalability of the approach.

Keywords: security, firewall configuration, security pol-
icy, formal verification, SMT solver.

1. Introduction

Securing network flows is a crucial and difficult task.
Some specific technical knowledge and clear ideas about
the global security requirement to be establish are required,
but are still insufficient in order to ensure the correctness of
a security configuration. One of the main reasons is the dif-
ference in semantics between, on the one hand, the security
policies (SP) used to express global security requirements,
and on the other hand the firewall configuration files (FC).
The former are generally specified in a high level declara-
tive language and easy to understand, whereas the latter are
low-level files subject to special configuration constraints in
order to ensure an efficient real time processing by specific
devices. One of these constraints is in particular that the fil-
tering rules of a FC file are treated in the order in which they
are read in the configuration file, in a switch-case fashion.

For instance, if two filtering rules associate different actions
to the same flow type, then only the rule with the lower or-
der is really applied. This is in contrast with the SP, which
is a set of rules considered without order. In this case, the
action taken, for the flow under consideration, is the one of
the non executed rule.

Several methods have been proposed [12, 2, 3, 1] for
the detection of inter-rule conflicts in FC. These work are
limited to the problem conflict avoidance, and do not con-
sider the more general problem of verifying whether a fire-
wall reacts correctly wrt a given SP. Solutions are studied
in [9], [6], and [10] for the analysis of firewalls’ behavior.
These methods require some final user interactions by send-
ing queries through a verification tool. Such manual solu-
tion can be tedious when checking discrepencies wrt com-
plicated security requirements. In [4] and [8] the author
address the problem of automatic verification by providing
automatic translation tool of the security requirements (SP),
specified in a high level language, into a set of ordered filter-
ing rule (i.e. a FC). Therefore, these methods can handle the
whole problem of conformance of FC to SP, but the validity
of the compilation itself has not been proven. In particular,
the FC rules obtained may be in conflict.

In this paper, we propose an automatic and generic
method for checking whether a firewall is well configured
wrt a security policy, given in an expressive enough declar-
ative language. Furthermore, the proposed method ensures
conflicts avoidance within the SP that we aim to establish
and returns key elements for the correction of a flawed FC.
Our method has been implemented as a prototype which can
be used either in order to validate an existing FC wrt a given
SP or downstream of a compiler of SP. It can also be used in
order to assist the updates of FC, as conflicts may be created
by the addition or deletion of filtering rules.

The remainder of this paper is organized as follows. Sec-
tion 2 settles the definition of the problems addressed in the

paper, in particular the properties of soundness and com-
pleteness of a FC wrt SP. In Section 3, we present an infer-
ence system introducing the proposed method and prove its
correctness and completeness. Section 4 elaborates our the
verification procedure. Finally, in Section 5 we present an
automatic verification tool that we have implemented based
on our method and some experiments on a case study.

2. Soundness and Completeness Properties

The main goal of this work consists in checking whether
a FC is sound and complete wrt a given SP. In this section,
we define formally these notions.

We consider a finite domain P containing all the head-
ers of packets possibly incoming to or outgoing from a net-
work. A firewall configuration (FC) is a finite sequence of
filtering rules of the form FC = (ri ⇒ Ai)0≤i<n. Each
precondition ri of a rule defines a filter for packets of P .
The structure of ri is described later in Section 5. Before,
we just consider a function dom mapping each ri into the
subset of P of filtered packets. Each right member Ai of
a rule of FC is an action defining the behaviour of the
firewall on filtered packets: Ai ∈ {accept , deny}. This
model describes a generic form of FC which are used by
most firewall products such as CISCO, Access Control List,
IPTABLES, IPCHAINS and Check Point Firewall...

A security policy (SP) is a set SP of formulae defin-
ing whether packets are accepted or denied. The nature of
the formulae is described in Section 4. In Section 3, we
only consider the definition domain of SP , partitioned into
dom(SP) =

⋃
A∈{accept,deny} SPA. SP is called consis-

tent if SPaccept ∩ SPdeny = ∅.

A FC is sound wrt a SP if the action undertaken by the
firewall for each forwarding packet, (i.e. the action of the
first filtering rule matching the packet) is the same as the
one defined by the SP.

Definition 1 (soundness) FC is sound wrt SP iff for all
p ∈ P , if there exists a rule ri ⇒ Ai in FC such that p ∈
dom(ri) and for all j < i, p /∈ dom(rj) then p ∈ SPAi .

A FC is complete wrt a SP if the action defined by the SP
for each packet p is really undertaken by the Firewall.

Definition 2 (completeness) FC is complete wrt SP iff
for all p ∈ P and A ∈ {accept , deny}, if p ∈ SPA

then there exists a rule ri ⇒ A in FC such that p ∈
dom(ri) \

⋃
j<i dom(rj).

3 Inference System

We propose in this section necessary and sufficient con-
dition for for the simultaneous verification of the properties

recurcall
((r ⇒ A); FC), D
FC, D ∪ dom(r) if dom(r) \D ⊆ SPA

success
∅, D

success
if D ⊇ dom(SP)

failure
FC, D

fail(fst(FC), D) if no other rule applies

Figure 1. Inference System

of soundness and completeness of a FC wrt a SP. The con-
ditions are presented in an inference system shown in Fig-
ure 1. The rules of the system in Figure 1 apply to couples
(FC, D) whose first component FC is a sequence of filter-
ing rules and whose second component D is a subset of P .
This latter subset represents the accumulation of the sets of
packets filtered by the rules of FC processed so far.

We write C `SP C ′ is C ′ is obtained from C by appli-
cation of an inference rule of Figure 1 (note that C ′ may be
a couple as above or one of success or fail) and we denote
by `∗SP the reflexive and transitive closure of `SP .

recurcall is the main inference rule. It deals with the first
filtering rule ri ⇒ A of the FC given in the couple. The
condition for the application of this rule is that the set of
packets dom(ri) filtered by this rule and not handled by the
previous rules (i.e. not in D) would follow the same action
A according to the the security policy. Hence, successful
repeated applications of recurcall ensures the soundness of
the FC wrt the SP.

The success rule is applied under two conditions. First,
recurcall must have been used successfully until all filtering
rules have been processed (in this case the first component
FC of the couple is empty). Second, the domain global
security policy must be included in D. This latter condition
ensures that all the packets treated by the security policy are
also handled by the firewall configuration (completeness of
FC).

There are two cases for the application of failure. In the
first case, failure is applied to a couple (FC,D) where FC
is not empty. It means that recurcall has failed on this couple
and hence that the FC is not sound wrt the SP. In this case,
failure returns the first filtering rule of FC as a example
of rule which is not correct, in order to provide help to the
user in order to correct the FC. In the second case, failure
is applied to (∅, D). It means that success has failed on
this couple and that the FC is not complete wrt the SP. In
this case, D is returned and can be used in order to identify
packets handled by the SP and not by the FC.

Let us now prove that the inference system of Figure 1 is
correct and complete. From now on, we assume given a FC
FC = r0 ⇒ A0, . . . , rn−1 ⇒ An−1 with n > 0.

In the correctness theorem below, we assume that SP is
consistent. We shall present in the next sections a method
for checking this property.

Theorem 1 (correctness) Assume that the security policy
SP is consistent. If (FC, ∅) `∗SP success then the firewall
configuration FC is sound and complete wrt SP .

Proof. If (FC, ∅) `∗SP success then we have (FC, ∅) `SP

(FC1, D1) `SP . . . `SP (FCn, Dn) `SP success, where
FCn = ∅, all the steps but the last one are recurcall and
dom(SP) ⊆ Dn. We can easily show by induction on that
for all 1 ≤ i ≤ n, Di =

⋃
j<i dom(rj). Let D0 = ∅.

Assume that there exists p ∈ P and ri ⇒ Ai in FC
(i < n) such that p ∈ dom(ri) \

⋃
j<i dom(rj). It follows

that p ∈ dom(ri) \ Di, and, by the condition of recurcall
that p ∈ SPAi . Hence FC is sound wrt SP .

Let A ∈ {accept , deny} and p ∈ SPA. By the condition
of the inference rule success, p ∈ Dn =

⋃
j<i dom(rj).

Let i be the smallest integer k such that p ∈ dom(rk). It
means that p ∈ dom(ri) \

⋃
j<i dom(rj). As above, it

follows that p ∈ SPAi , and hence that Ai = A, by the hy-
pothesis that SP is consistent. Therefore, FC is complete
wrt SP . ¤

Theorem 2 (completeness) If the firewall configuration
FC is sound and complete wrt the security policy SP then
(FC, ∅) `∗SP success.

Proof. Assume that FC it is sound and complete wrt SP .
The soundness implies that for all i < n and all packet
p ∈ dom(ri) \

⋃
j<i dom(rj), p ∈ SPAi . It follows that

(FC, ∅) `SP (FC1, D1) `SP . . . `SP (FCn, Dn) with
Di =

⋃
j<i dom(rj) for all i ≤ n and FCn = ∅, by appli-

cation of the inference recurcall. Moreover, the complete-
ness of FC implies that every p ∈ dom(SP) also belongs
to Dn. Hence (FCn, Dn) `SP success, and altogether
(FC, ∅) `∗S P success. ¤

Theorem 3 (soudness of failure) If (FC, ∅) `∗SP fail then
the firewall configuration FC is not sound or not complete
wrt the security policy SP .

Proof. Either we can apply iteratively the recurcall rule
starting with (FC, ∅), until we obtain (∅, ⋃j<n dom(rj)),
or one application of the recurcall rule fails. In the
latter case, there exists i < n such that dom(ri) \⋃

j<i dom(rj) * SPAi . Therefore, there exists p ∈ P
such that p ∈ dom(ri) \

⋃
j<i dom(rj) and p /∈ SPAi . It

follows that FC is not sound wrt the security policy SP .
If (FC, ∅) `∗S P (∅,⋃j<n dom(rj)) using recurcall but

the application of the success rule to the last couple fails,

c1 ⇒ accept | e1

c2 ⇒ deny
c3 ⇒ accept
c4 ⇒ deny | e4

Figure 2. A Security Policy

then there exists A ∈ {accept , deny} and p ∈ SPA such
that p /∈ ⋃

j<n dom(rj). It follows that FC is not complete
wrt the security policy SP . ¤

Since the application of the inferences to (SP, ∅) always
terminates, and the outcome can only be success or fail, it
follows immediately from the Theorem 1 that if the firewall
configuration FC is not sound or not complete wrt the se-
curity policy SP , then (FC, ∅) `∗SP fail (completeness of
failure).

To summarize the above results, we have the following
sufficient and necessary conditions for

soundness: ∀i < n, dom(ri) \
⋃

j<i dom(rj) ⊆ SPAi
,

completeness: soundness and dom(SP) ⊆
⋃

i<n

dom(ri).

4 Verification Procedures

We describe in this section how to express the conditions
for the above inference system of Section 3 as satisfiability
problems for propositional formulae.

We consider a security policy which is presented as a fi-
nite set of directives: SP = {ci ⇒ Ai|ei | 1 ≤ i ≤ m}.
Each directive can be simple or complex. A simple direc-
tive describes whether a traffic destinated to one or more
services that are required by one or more sources and given
by one or more destinations (as described by the condi-
tion ci) must be accepted or refused (according to Ai ∈
{accept , deny}). A complex directive is basicly a simple
directive but considering some exceptions defined in ei. The
following examples are respectively simple and complex di-
rectives.

• A sub network LANA has the right to access to the web
service provided by a machine B located in the sub network
LANB .

• A sub network LANA, except the machine A′, has the right
to access to the web service provided by a machine B located
in the sub network LANB .

The condition of the above second directive refers to
the flow between the source LANA and the destination
B, the directive action is accept , and its exception is the
source machine A′. The conditions and the exceptions are
expressed as conjunctions of logic propositions describing

the following main fields: source(s), destination(s) and ser-
vice(s).

4.1 Security Policy Consistency

As explained in Section 3, the SP must be consistent in
order to ensure the correctness of the verification method.
Hence in a first step, we shall check that the domains of
accepted and denied packets, SPaccept and SPdeny , do not
overlap. The set of accepted packets SPaccept , is the union
of one set for each directive. Each set represents either the
domain of a simple directive, if the action of the correspond-
ing condition is accept , or the domain of a complex direc-
tive’s exception, if its action is deny or else the difference
between the domains of the condition and the exception of
a complex directive if its main action is accept . The set of
denied packets is definied symmetrically. We express the
above sets by propositional formulas φa and φd defining re-
spectivelly the domains of accepted and denied packets. In
the case of the SP of Figure 2, their definitions are

φa ::= (c1 ∧ ¬e1) ∨ c3 ∨ e4

φd ::= e1 ∨ c2 ∨ (c4 ∧ ¬e4)

In order to ensure that the domains do not overlap, we
prove the insatisfiability of the following propositional for-
mula φa ∧ φd. It ensures that no packet satisfies simultane-
ously φa and φd.

4.2 Soundness Verification

Our goal is to check whether a firewall configuration
FC = {ri ⇒ A′i | 0 ≤ i < n} is sound wrt the above
security policy SP .

According to Section 3, the condition for the soundness
of FC wrt SP is that, for each filtering rule ri ⇒ A′i,
the domain dom(ri) minus the accumulated domains of the
previous rules, is included in the set of packets that should
undergo, according to SP , the same action as A′i of the fil-
tering rule. The soundness condition is equivalent to the in-
satisfiability of all the following propositional formulae, for
0 ≤ i < n (expressing the negation of the soundness condi-
tion in Section 3): φi∧¬φAi where φi ::= φri∧¬(∨i−1

j=1φrj)
and φAi is defined as above.

4.3 Completeness Verification

As explained in Section 3, in order to verify the com-
pleteness property of a firewall configuration, we check that
the domain of the security policy SP is included in that of
the firewall configuration FC. Theses domains are made of
the unions of the respective domains of filtering rules and

security directives, as expressed by the following formulae.

φSP ::=
m∨

i=1

ci φFC ::=
n−1∨

i=0

ri

The completeness condition of Section 3 is the insatisfi-
ability of of the following formula: φSP ∧ ¬φFC .

5 Automatic Verification tool

The above presentation of the conditions of Section 3
permits the automation of the verification of soudness and
completeness of FC wrt SP. In fact, in the previous section,
these properties are expressed as satisfiability problems.

We have used a recent satisfiability solver modulo theo-
ries, Yices [5], in order to describe the different inputs and
to automate the verification process. Yices provides differ-
ent additional functions, compared to simple satisfiability
solvers. These functions are based on theories like those of
arrays, list structures and bit vectors.

The first input of our verification tool is a set of firewall
rules. Each rule is defined by a priority order and composed
of the following main fields: the source, the destination,
the protocol and the port. The source and destination fields
correspond to one or more machines identified by an IPv4
address and a mask coded both on 4 bytes, each bit being
represented by a proposition variable. For better readability,
we consider in this section the IP coding on 4 bits. For
example, the following expression written in Yices syntax
refers to the third filtering rule concerning UDP or TCP flow,
coming from the source network 1.0.0.0/2 and reaching
the network 1.1.0.0/3 for a destination port belonging to
the subrange [20− 60].
(define r::(-> int bool))(assert(=(r 3)(and ips4

(not ips3)ipd4 ipd3(not ipd2)(>=port20)(<=port60)

(or(=protocoltcp)(=protocoludp))))).

In order to illustrate the verification procedure proposed,
we have chosen to apply our method to a case study of a
corporate network represented in Figure 3. The network is
divided into three zones delineated by branches of a firewall
whose initial configuration FC corresponds to the rules in
Table 1. The security policy SP that should be respected
contains the following directives.

sp1 : net 1 has the right to access to net 2.

sp2 : The machine admin has the right to access to the FTP ser-
vice provided by the FTP server belonging to net 3.

sp3 : net 1 has not the right to access to the DNS service pro-
vided by the DNS server belonging to net 2.

In the following, we note that di and d′i are respectively the
condition and the exception of the security directive spi.

Figure 3. Network Architecture Example

src adr dst adr protocol dst port action
r1 1.1.1.1 0.1.1.1 21 tcp accept
r2 1.1.1.0 1.0.0.1 53 udp deny
r3 1.1.1.0/3 1.0.0.0/3 * * accept

Table 1. Firewall Configuration to be Verified

Our goal is to verify that the configuration FC is con-
form to the security policy SP by checking the soundness
and the completeness properties. But first, we must verify
that the security policy is consistent.

5.1 Security Policy Consistency Verifica-
tion

After we specified the security policy SP in Yices syn-
tax, checking the consistency of SP amounts to check satis-
fiability. We have obtained the satisfiability result displayed
in Figure 4.

Note that the Yices option e (evidence) displays a model
if the logic expression is satifiable. In our case, this means
that the security policy is not consistent. An analysis of
the model obtained shows that the directives sp1 and sp3

have contradictory decisions. It concerns on the flow com-
ing from a machine belonging to net 1 and destinated the
DNS service of the DNS server 1.0.0.1. Indeed, the third
directive indicates that the network net 1 has not the right
to access to the DNS server of net 2 while the first directive
permits it. One possible correction would be to replace the
two directives in conflict by the following single complex
directive.

Figure 4. Coherence verification

Figure 5. Soundness verification

sp1 : net 1 has the right to access to net 2 except the DNS
server (DNS service).

5.2 Soundness Verification

Once ensured that the security policy is consistent, we
proceed to the verification of the firewall configuration
soundness, using the formulae of Section 4, which express
the conditions of Section 3. The satisfiability result obtained
is displayed in Figure 5. The outcome shows that the fire-
wall configuration FC is not sound wrt the security policy
SP , i.e. that there exists some packets that will undergo
an action different of that imposed by the security policy.
It indicates also that r3 is the first rule that causes this dis-
crepancy precisely with the exception of directive sp1. In-
deed, the model returned corresponds to a packet accepted
by the firewall through the rule r3 while it should be re-
fused according to the first directive of the security policy.
This conflict can be resolved by adding a rule immediately
preceding the rule r3, which allows to implement the first
directive exception precised by the given model. Table 2
presents this modification.

src adr dst adr protocol dst port action
r1 1.1.1.1 0.1.1.1 21 tcp accept
r2 1.1.1.0 1.0.0.1 53 udp deny
r3 1.1.1.1 1.0.0.1 53 udp deny
r4 1.1.1.0/3 1.0.0.0/3 * * accept

Table 2. A Sound Firewall Configuration

5.3 Completeness Verification

After that the soundness property has been established,
we proceed to the verification of the completeness of the
firewall configuration. We obtained the satisfiability result
displayed in Figure 6.

According to this outcome, the configuration FC is not
complete wrt the security policy SP : some packets handled
by the security policy are not treated by the filtering rules.
Indeed, the rule r4 addresses only a subnetwork of net 2.

Figure 6. Completeness verification

The packet corresponding to the model returned belongs to
another part of net 2, which is untreated. One possible
solution would be to change, as shown in Table 3, the mask
used in the destination address of the rule r4 to consider all
the first directive domain.

src adr dst adr protocol dst port action
r1 1.1.1.1 0.1.1.1 21 tcp accept
r2 1.1.1.0 1.0.0.1 53 udp deny
r3 1.1.1.1 1.0.0.1 53 udp deny
r4 1.1.1.0/3 1.0.0.0/2 * * accept

Table 3. A sound and complete FC

We note that YICES validated the three properties after
the modifications taken in sections 5.1, 5.6 and 5.3 by dis-
playing in each case an insatisfiability result.

5.4 Experimental Results

In order to better assess the performance of the Yices
tool for checking satisfiability of propositional formulas,
we consider time treatement factor that we review by vary-
ing the different parameter sizes provided by the solver. In
overall terms, we consider the average processing time of
the three verification procedures (securtity policy consis-
tency, firewall configuration soundness and completeness)
by varying the total number of Boolean variables used. We
note that we treat real field values such IPv4 address and
[1-65535] port range. To perform this study, we used the
option st of Yices to collect statistical information. The
experimental tests were conducted on an Intel Dual core 1.6
GHz with 1 Gbyte of RAM.

bool var nb processing time(s)
20 0.004
65 0,020
79 0,028

155 0,09
179 0,21

Table 4. Processing time evaluation

The experimental results are summarized in Table 4. The
tool processing time obtained shows that our tool performed
efficiently on the case studies.

6 Conclusion

In this paper, we propose a formal method for certify-
ing automatically that a firewall configuration is sound and
complete wrt a security policy. Otherwise, the method pro-
vides key information helping users to correct configuration
errors. Our method permits also to prove the consistency
of a security policy which is a necessary condition for the
verification procedure. Finally, our method has been imple-
mented using the satisfiability solver Yices. The experimen-
tal results obtained are very promising.

As further work, we are considering to extend the ap-
proach in order to handle stateful firewall configurations.

References

[1] T. Abbes, A. Bouhoula, and M. Rusinowitch. Inference sys-
tem for detecting firewall filtering rules anomalies. In Proc.
of the 23rd annual ACM Symp. on Applied Computing, 2008.

[2] E. Al-Shaer and H. Hamed. Firewall policy advisor for
anomaly detection and rule editing. In IEEE/IFIP Integrated
Management, IM’2003, 2003.

[3] M. Benelbahri and A. Bouhoula. Tuple based approach for
anomalies detection within firewall filtering rules. In 12th
IEEE Symp. on Computers and Communications, 2007.

[4] F. Cupens, N. Cuppens-Boulahia, T. Sans, and A. Miege. A
formal approach to specify and deploy a network security
policy. In In Second Workshop on Formal Aspects in Secu-
rity and Trust, pages 203-218, 2004.

[5] B. Dutertre and L. Moura. The yices smt solver. Available at
http://yices.csl.sri.com/tool-paper.pdf,
2006.

[6] P. Eronen and J. Zitting. An expert system for analyzing
firewall rules. In Proc. of 6th Nordic Workshop on Secure IT
Systems, 2001.

[7] M. Gouda and A. X. Liu. Firewall design: consistency, com-
pleteness and compactness. In In Proc. of the 24th IEEE Int.
Conf. on Distributed Computing Systems, 2004.

[8] H. Hamdi, M. Mosbah, and A. Bouhoula. A domain specific
language for securing distributed systems. In Second Int.
Conf. on Systems and Networks Communications, 2007.

[9] S. Hazelhusrt. Algorithms for analyzing firewall and router
access lists. TR, Univ. of the Witwatersrand, 1999.

[10] A. X. Lui, M. Gouda, H. Ma, and A. Ngu. Firewall queries.
In Proc. of the 8th Int. Conf. on Principles of Distributed
Systems, pages 197-212, 2004.

[11] A. Mayer, A. Wool, and E. Ziskind. Fang: A firewall analy-
sis engine. In Proc. of the 2000 IEEE Symp. on Security and
Privacy, pages 14–17, 2000.

[12] C. Pornavalai and T. Chomsiri. Firewall policy analyzing
by relational algebra. In The 2004 Int. Technical Conf. on
Circuits/Systems, Computers and Communications, 2004.

