Cette page vous donne les différences entre la révision choisie et la version actuelle de la page.

Lien vers cette vue

paco-en [2018/05/18 17:11]
Jean Bresson [PEPS I3A: Machine Learning and Computer-Aided Composition]
— (Version actuelle)
Ligne 1: Ligne 1:
-{{ :paco:cnrs.jpg?80|}} 
-====== PEPS I3A: Machine Learning and Computer-Aided Composition ==== 
-[ EN ] | [ [[paco|FR]] ] 
-**Projet Exploratoire Premier Soutien ([[http://www.cnrs.fr/ins2i/spip.php?article2867|PEPS]]) 2018: Intelligence Artificielle et Apprentissage Automatique**\\ 
-// Processus d'Apprentissage en Composition assistée par Ordinateur // 
-As soon as the first computers appeared, contemporary music creation 
-started to utilize the newly offered possibilities for computation and 
-representation, to expand the range of compositional and sonic options, 
-both enriching the power of expression for musicians and the musical 
-experience of listeners.  The beginnings of what would later be called 
-computer music were inspired by artificial intelligence, the very idea 
-of ​​programming machines capable of composing, rivalling the creativity 
-of their creators.  We might find the same idea reappearing also in 
-recent projects, both ambitious and profiled. 
-However, the notion of learning has rarely been exploited by composers 
-in the perspective of being an aid to creation.  In the field of 
-computer-assisted composition, mistrust of one certain dispossession in 
-the creative act has instead led researchers and composers to turn to 
-constructivist approaches and other aspects of information technology, 
-such as that of end-user programming (ie. giving the end-user of a 
-system the ability to program the system themselves) and visual 
-programming languages. 
-The aim of this exploratory project is to study the potential applications  
-of machine learning techniques in computer-assisted music 
-composition.  In contrast to a more widespread approach of designing 
-more or less self-contained creative systems, we are interested here in 
-the potential contribution of AI and learning as an assistant to 
-composition (or music analysis), in the accomplishment of tasks such as 
-classification and processing of "musical gestures" (temporal 
-descriptors, melodies, graphic inputs), aiding decisions or explorations 
-of solution spaces from operational search algorithms, or the generation 
-of structure and musical parameters from sample databases.  The 
-applications envisaged can be linked to a range of stages and activities 
-in a compositional workflow: rhythmic analysis and quantification, 
-composition by recomposition/concatenation of motifs etc., for which 
-machine learning will propose new ways of controlling, generating and 
-understanding musical structures. 
-**STMS Laboratory: IRCAM/CNRS/Sorbonne Université** (Paris, France)\\ 
-**Coordinator:** [[http://repmus.ircam.fr/bresson|Jean Bresson]]\\ 
-[[http://imtr.ircam.fr/imtr/Diemo_Schwarz|Diemo Schwarz]] (Sound-Music-Movement Interaction team),  
-[[http://recherche.ircam.fr/anasyn/obin/|Nicolas Obin]] (Sound Alysis and Synthesis team)  
-Paul Best (Master's internship, RepMus / ISMM teams),  
-[[http://www.alirezafarhang.com/|Alireza Farhang]] (IRCAM musical research residency),  
-[[https://avinjar.no/|Anders Vinjar]] (composer, Oslo),  
-[[http://www.music.mcgill.ca/marlonschumacher/|Marlon Schumacher]] (Institut für Musikwissenschaft und MusikinformatikKarlsruhe, Hochschule für Musik Karlsruhe) 
-===== Links and events ===== 
-**• Workshop @SMC'18: [[.:smc-workshop|Music Composition & Creative Interaction with Machine Learning]]**\\ 
-[[http://smc2018.cut.ac.cy/|15th Sound and Music Computing conference]],  July 4-7 2018, Limassol, Cyprus. 
-**• Traces de l'expressivité : partition de flux de données gestuelles pour les œuvres interdisciplinaires**\\ 
-Alireza Farhang: [[https://www.ircam.fr/person/alireza-fahrang/|IRCAM musical research residency]]  
-**• Applications of Machine Learning in Computer-Aided Composition**\\ 
-Paul Best: [[http://repmus.ircam.fr/bresson/enseignement/stage2018|Master's intesrnship — supervision Jean Bresson and Diemo Schwarz]]\\ 
-With support from IRCAM "Unités Projet Innovation" (UPI) program. 
-**• OM-XMM:** connection between the [[https://openmusic-project.github.io/|o7]] computer-aided composition environment and the [[http://ircam-rnd.github.io/xmm/|XMM]] library for motion learning and recognition.\\ 
-=> [[https://github.com/openmusic-project/om-xmm|See on GitHub]]  

paco-en.1526656306.txt.gz · Dernière modification: 2018/05/18 17:11 par Jean Bresson