Mazzola, G. (1990), Geometrie der Töne, Birkhäuser Verlag.
Boros, J. (1990), Some Properties of the All-Trichord Hexachord, ITO, 11(6), 19-41.
Hasty, C.F. (1990), An Intervallic definition of Set Class, JMT, 31, 183-204.
Isaacson, E.J. (1990), Similarity of Interval-Class Content between Pitch-Class Sets : The IcVSIM relation, JMT, 34(1), 1-28.
Lewin, D. (1990), Klumpenhouwer Networks and Some Isographies That Involve Them, MTS, Vol. 12, No. 1 (Spring), 83-120.
Morris, R. (1990), Pitch-Class complementation and its generalizations, MT, 34(2), 175-245.
Perle, G. (1990), Pitch-Class Set Analysis : An Evaluation, Journal of Musicology, 8, 151-172.
Perle, G. (1990), The Listening Composer, University of California Press (en particulier lecture 4: Pitches or Pitch-Classes?, 93-121).
Clough, J and J. Douthett (1991), Maximally Even Sets, JMT, 35, 93-173.
Marvin, E.W. (1991), The Perception of Rhythm in Non-Tonal Music : Rhythmic Contours in the Music of Edgard Varèse, MTS, 13(1), 61-78.
Babbitt, M. (1992), The Function of Set Structure in the Twelve-Tone System, PhD Thesis, Princeton University, Departement of Music (orig. 1946).
Clough, J., J. Douthett, N. Ramanathan and L. Rowell (1993), Early Indian Heptatonic Scales and Recent Diatonic Theory, MTS, 15(1), 36-58.
Dunsby, J. (1993) (ed.) Models of Musical Analysis. Early Twentieth-Centiry Music, Blackwell (en particulier, le chapitre 6: " The Theory of Pitch-Class Sets " by B. Simms et le chapitre 7: " Foreground Rhythm in Early Twentieth-Century Music " by A. Forte).
Fripertinger, H. (1993),
Enumeration in Musical Theory, Volume 1 of Beiträge zur elektronischen Musik. Graz : Institut für elektronische Musik an der Hochschule fr Musik und darstellende Kunst.
Gut, S. (1993), Plaidoyer pour une utilisation ponderée des principes riemanniens d'analyse tonale, Analyse Musicale, 1er trimestre, 13-20.
Morris, R. (1993), New Directions in the Theory and Analysis of Musical Contour, MTS, 15(2), 205-228.
Block S. and J. Douthett (1994), Vector products and intervallic weighting, JMT, 38(1), 21-41.
Clough, J. (1994), Diatonic interval cycles and hierarchical structure, PNM, 32(1), 228-253.
Conner, T. A. (1994), Techniques for Manipulating the Internal Structure of Mosaics, ITO, 12(7-8), 15-34.
Atlas R. et Cherlin M. (1994) (éd.) Musical Transformation and Musical Intuition (Eleven Essays in honor of David Lewin), Ovenbird Press.
Harrison, D. (1994), Harmonic Function in Chromatic Music: A Renewed Dualist Theory and an Account of Its Precedents. Chicago: University of Chicago Press, 215-322.
-
Slough, J. (1994), Diatonic Interval Cycles and Hierarchical Structures, PNM, Vol. 32, No. 1, 228-253
Agmon, E. (1995), Functional harmony revisited : A prototype-theoretic approach. MTS 17 (2), 196214.
Agmon, E. (1995), Diatonicism and Farey Series, Muzica, 1, 68-73.
Clampitt, D. (1995), Some Refinements on the Three Gap Theorem, with application to music, Muzica, 2, 12-21.
Clough, J. and J. Douthett (1995), Hypertetrachords, Muzica, 1, 100-109.
Hyer, B. (1995), "Reimag(in)ing Riemann", JMT, Vol. 39, No. 1 (Spring), 101-138.
Morris, R. (1995), Compositional Spaces and Other Territories, PNM, 33(1/2), 328-358.
Morris, R. (1995), Equivalence and Similarity in pitch and their interaction with PCSet Theory, JMT, 39(2), 207-243.
Soderberg, S. (1995), Z-Related Sets as dual inversions, JMT, 39(1), 77-100.
Agmon, E. (1996), Coherent tone-systems: a study in the theory of diatonicism, JMT, 40(1), 39-59.
Alegant, B. (1996), Unveiling Schoenberg’s op. 33b, MTS, 18(2), 143-166.
Cohn, R. (1996), Maximally smooth cycles, Hexatonic systems, and the analysis of late-romantic triadic progressions, MA, 15/i, 9-40.
Haimo, E. (1996), Atonality, Analysis and the Intentional Fallacy, MTS, 18(2), 167-199.
Lewin, D. (1996), Cohn Functions, JMT, 40(2), 181-216.
Agmon, E. (1997), Musical Durations as Mathematical Intervals : Some implications for the Theory and Analysis of Rhythm, MA, 16/i, 45-75.
Agmon, E. (1997), Octave Equivalence versus Octave Relatedness: Circle versus Helix; chord versus melody, Proceedings of the Third Triennial Escom Conference, Uppsala University, 122-127.
Baker, J., D. Beach and J. Bernard (1997) (ed.), Music Theory in Concept and Practice. Eastman Studies in Music.
Cope, D. (1997), Techniques of the Contemporary Composer. (en particulier le chapitre 7: "Pitch-Class sets", 77-98).
Cohn, R. (1997), Neo-Riemannian Operations, Parsimonious Trichords, and their Tonnetz Representations, JMT, Vol. 41, No. 1, 1-66.
Noll, T. (1997), Morphologische Grundlagen der abendländischen Harmonik, Musikometrika, Volume 7.
Carey, N. (1998), Distribution Modulo 1 and Musical Scales, PhD Thesis, University of Rochester, 1998.
Clough, J. (1998), A rudimentary geometric model for contextual transposition and inversion, JMT, 42(2), 297-319.
Cohn, R. (1998), Introduction to neo-riemannian theory: a survey and a historical perspective, JMT, 42(2), 167-180.
Cohn, R. (1998), Square dances with cubes, JMT, 42(2), 283-296.
Douthett, J. and P. Steinbach (1998), Parsimonious graphs: a study in parsimony, contextual transformations, and modes of limited transposition, JMT, 42(2), 241-263.
Heinemann, S. (1998), Pitch-Class Set Multiplication in Theory and Practice, MTS, 20(1), 72-96.
Krumhansl, C. (1998), Perceived Triad Distance: Evidence Supporting the Psychological Reality of Neo-Riemannian Transformations, JMT, Vol. 42, No. 2 (Autumn), 265-81.
Morris, R. (1998), Voice-Leading Spaces, MTS, 20(2), 175-208.
Scott, D. and E. J. Isaacson (1998), The Interval Angle: a similarity measure for pitch-class sets, PNM, 36(2), 107-142.
Alegant, B. (1999), When Even becomes Odd : a partitional approach to inversion, JMT, 43(2), 193-230.
Clough, J., N. Engebretsen and J. Kochavi (1999), Scales, Sets and Interval Cycles: A Taxonomy, MTS, 21(1), 74-104.