Bibliographie sur la Set Theory et les théories transformationnelles, diatoniques et néo-riemanniennes

Actes du Colloque "Autour de la Set Theory" (Collection "Musique/Sciences"): Couvertures (en français et en anglais), avant-propos et introduction (en français et en anglais), table des matières (en français et en anglais)

(nouvelle version)

CMJ = Computer Music Journal
ITO = In Theory Only
JMM = Journal of Mathematics and Music
JMT = Journal of Music Theory
MA = Music Analysis
MTO = Music Theory Online
MTS = Music Theory Spectrum
Mus = Musurgia
PNM = Perspectives of New Music

1960-1969

  • Babbitt, M. (1960), Twelve-Tone Invariants as Compositional Determinants, Musical Quarterly, Vol. 46, No. 2, 249-259 (Reprint in The Collected Essays of Milton Babbitt, Princeton University Press, 2003, 55-69).
  • Forte, A. (1964), A Theory of Set-Complexes for Music, JMT 8, 136-184.
  • Clough, J. (1965), Pitch-Set Equivalence and Inclusion (A comment on Forte's Theory of Set-Complexes), JMT 9(1), 163-180.
  • Lewin, D. (1966), On Certain Techniques of Re-Ordering in Serial Music, JMT 10(2), 276-287.
  • Gamer, C. (1967), Some combinational resources of equal-tempered systems, JMT 11 (1), 32-59.

1970-1979

  • Babbitt, M. (1972) Past and Present Concepts of the Nature and Limits of Music. In Perspectives on Contemporary Music Theory (edited by B. Boretz and E. T. Cone), W. W. Norton & Company, New York, 3-9. Reprinted in The Collected Essays of Milton Babbitt, Princeton University Press, 2003, 78-85.
  • Forte, A. (1973) The Structure of Atonal Theory, Yale University Press.
  • Browne, R. (1974) Review of Allen Forte's theory of chords, JMT, 18(2), 390-415.
  • Morris, R. and D. Starr. (1974) The structure of all-interval series, JMT 18(2), 364-389.
  • Regener, R. (1974) On Allen Forte's theory of chords, PNM 13, 191-212.
  • Fuller, R. (1975) A structuralist approach to the diatonic scale, JMT 19(2), 182-210.
  • Lansky, P. (1975) Pitch-Class Consciousness, PNM, 30-56.
  • Starr, D. (1978) Sets, Invariance and partitions, JMT, 22, 1-42.
  • Forte, A. (1978) The Harmonic organization of the Rite of Spring, Yale University Press.
  • Beach, D.W. (1979) Pitch Structure and the Analytic Process in Atonal Music : An Interprestation of the Theory of Sets, MTS 1, 7-22.
  • Clough, J. (1979) Aspects of diatonic sets, JMT 23 (1), 45­61.

1980-1989

  • Balzano, G. (1980), The group-theoretic description of 12-fold and microtonal pitch systems, CMJ, 4, 66-84.
  • Forte, A. (1980), Aspects of Rhythm in Webern’s Atonal Music, MTS 2, 90-109.
  • Lewin, D. (1980), On Generalized Intervals and Transformations, JMT, Vol. 24, No. 2 (Autumn), 243-51.
  • Vieru, A. (1980), Cartea modurilor. Bucharest : Muzicala (vers. angl. 1993, The Book of Modes, Editura Muzicala, Bucharest).
  • Browne, R. (1981), Tonal implications of the diatonic set, ITO 5 (6-7), 3-21.
  • Hasty, C. (1981), Segmentation and Process in Post-Tonal Music, MTS 3, 54-73.
  • Christensen, T. (1982), The Schichtenlehre of Hugo Riemann, In Theory Only, Vol. 6, No. 4, 37-44.
  • Lewin. D. (1982), A Formal Theory of Generalized Tonal Functions, JMT 26(1), 23-60.
  • Morris, R. (1982), Set groups, complementation, and mappings among pitch-class sets, JMT 26(1), 101-144.
  • Schmalfeldt, J. (1983), Berg's Wozzeck harmonic language and dramatic design. Yale University Press.
  • Clough, J. and G. Myerson (1985), Variety and multiplicity in diatonic systems, JMT 29(2), 249-270.
  • Cross, J. (1985) Can Analysis be taught ?, MA, 4, 1/2, 183-194.
  • Clough, J. and G. Myerson (1986), Musical scales and the generalized cycle of fifths, American Mathematical Monthly, 93(9), 695-701.
  • Pople, A. (1986), Review of Janet Schmalfeldt’s Berg’s Wozzeck : Harmonic Language and Dramatic Design, MA 5, 2/3, 265-270.
  • Roeder, J. (1987), A geometric representation of pitch-class series, PNM 25, 362-409.
  • Cohn, R. (1988), Inversional Symmetry and Transpositional Combination in Bartok, MTS10, 19-42.
  • Morris, R. and B. Alegant (1988), The Even Partitions in The Twelve-Tone Music, MTS 10, 74-101.
  • Agmon, E. (1989), A mathematicam model of the diatonic system, JMT 33 (1), 1-25.
  • Carey, N. and D. Clampitt. (1989), Aspects of Well-formed Scales, MTS 11(2), 187-206.
  • Clough, J. (1989), Use of the exclusion relation to profile pitch-class sets, JMT 33, 181-201.
  • Cope, D. (1989), New Directions in Music (fifth edition), wcb, 1989 (en particulier le chapitre 2: "Roots of the experimental tradition", 30-54).
  • Deliège, C. (1989), La Set-Theory ou les enjeux du pléonasme, Analyse Musicale, 4e trimestre, 64-79.
  • Forte, A. (1989), La Set-complex theory : élevons les enjeux, Analyse Musicale, 4e trimestre, 80-86.
  • Huck, W. (1989), An Exploration of Linear Algebraic Models of Musical Spaces, Indiana Theory Review 10, 51-63.
  • Mead, A. (1989), The State of Research in Twelve-Tone and Atonal Theory, MTS 11(1), 40-48.
  • Mead, A. (1989), The State of Research in Twelve-Tone and Atonal Theory, MTS 11(1), 40-48.
  • Mesnage, M. (1989), La Set-Complex Theory : de quels enjeux s'agit-il?, Analyse Musicale, 4e trimestre, 87-90.
  • Rahn, J. (1989/90), Notes on Methodology in Music Theory, JMT, 34, 143-154.
  • Rahn, J. (1989), Toward a Theory of Chord Progression, ITO, 11(1-2), 1-10.
  • Walker, R. (1989), Modes and Pitch-Class sets in Messiaen : a brief discussion of 'Première Communion de la Vierge, MA, 159-168.

1990-1999

  • Mazzola, G. (1990), Geometrie der Töne, Birkhäuser Verlag.
  • Boros, J. (1990), Some Properties of the All-Trichord Hexachord, ITO, 11(6), 19-41.
  • Hasty, C.F. (1990), An Intervallic definition of Set Class, JMT, 31, 183-204.
  • Isaacson, E.J. (1990), Similarity of Interval-Class Content between Pitch-Class Sets : The IcVSIM relation, JMT, 34(1), 1-28.
  • Lewin, D. (1990), Klumpenhouwer Networks and Some Isographies That Involve Them, MTS, Vol. 12, No. 1 (Spring), 83-120.
  • Morris, R. (1990), Pitch-Class complementation and its generalizations, MT, 34(2), 175-245.
  • Perle, G. (1990), Pitch-Class Set Analysis : An Evaluation, Journal of Musicology, 8, 151-172.
  • Perle, G. (1990), The Listening Composer, University of California Press (en particulier lecture 4: Pitches or Pitch-Classes?, 93-121).
  • Clough, J and J. Douthett (1991), Maximally Even Sets, JMT, 35, 93-173.
  • Marvin, E.W. (1991), The Perception of Rhythm in Non-Tonal Music : Rhythmic Contours in the Music of Edgard Varèse, MTS, 13(1), 61-78.
  • Babbitt, M. (1992), The Function of Set Structure in the Twelve-Tone System, PhD Thesis, Princeton University, Departement of Music (orig. 1946).
  • Clough, J., J. Douthett, N. Ramanathan and L. Rowell (1993), Early Indian Heptatonic Scales and Recent Diatonic Theory, MTS, 15(1), 36-58.
  • Dunsby, J. (1993) (ed.) Models of Musical Analysis. Early Twentieth-Centiry Music, Blackwell (en particulier, le chapitre 6: " The Theory of Pitch-Class Sets " by B. Simms et le chapitre 7: " Foreground Rhythm in Early Twentieth-Century Music " by A. Forte).
  • Fripertinger, H. (1993), Enumeration in Musical Theory, Volume 1 of Beiträge zur elektronischen Musik. Graz : Institut für elektronische Musik an der Hochschule fr Musik und darstellende Kunst.
  • Gut, S. (1993), Plaidoyer pour une utilisation ponderée des principes riemanniens d'analyse tonale, Analyse Musicale, 1er trimestre, 13-20.
  • Morris, R. (1993), New Directions in the Theory and Analysis of Musical Contour, MTS, 15(2), 205-228.
  • Block S. and J. Douthett (1994), Vector products and intervallic weighting, JMT, 38(1), 21-41.
  • Clough, J. (1994), Diatonic interval cycles and hierarchical structure, PNM, 32(1), 228-253.
  • Conner, T. A. (1994), Techniques for Manipulating the Internal Structure of Mosaics, ITO, 12(7-8), 15-34.
  • Atlas R. et Cherlin M. (1994) (éd.) Musical Transformation and Musical Intuition (Eleven Essays in honor of David Lewin), Ovenbird Press.
  • Harrison, D. (1994), Harmonic Function in Chromatic Music: A Renewed Dualist Theory and an Account of Its Precedents. Chicago: University of Chicago Press, 215-322.
  • Klumpenhouwer, H. (1994), Some Remarks on the Use of Riemann Transformations, MTO, Vol. 0, No. 9, July.
  • Slough, J. (1994), Diatonic Interval Cycles and Hierarchical Structures, PNM, Vol. 32, No. 1, 228-253
  • Agmon, E. (1995), Functional harmony revisited : A prototype-theoretic approach. MTS 17 (2), 196­214.
  • Agmon, E. (1995), Diatonicism and Farey Series, Muzica, 1, 68-73.
  • Clampitt, D. (1995), Some Refinements on the Three Gap Theorem, with application to music, Muzica, 2, 12-21.
  • Clough, J. and J. Douthett (1995), Hypertetrachords, Muzica, 1, 100-109.
  • Hyer, B. (1995), "Reimag(in)ing Riemann", JMT, Vol. 39, No. 1 (Spring), 101-138.
  • Morris, R. (1995), Compositional Spaces and Other Territories, PNM, 33(1/2), 328-358.
  • Morris, R. (1995), Equivalence and Similarity in pitch and their interaction with PCSet Theory, JMT, 39(2), 207-243.
  • Soderberg, S. (1995), Z-Related Sets as dual inversions, JMT, 39(1), 77-100.
  • Agmon, E. (1996), Coherent tone-systems: a study in the theory of diatonicism, JMT, 40(1), 39-59.
  • Alegant, B. (1996), Unveiling Schoenberg’s op. 33b, MTS, 18(2), 143-166.
  • Cohn, R. (1996), Maximally smooth cycles, Hexatonic systems, and the analysis of late-romantic triadic progressions, MA, 15/i, 9-40.
  • Haimo, E. (1996), Atonality, Analysis and the Intentional Fallacy, MTS, 18(2), 167-199.
  • Lewin, D. (1996), Cohn Functions, JMT, 40(2), 181-216.
  • Agmon, E. (1997), Musical Durations as Mathematical Intervals : Some implications for the Theory and Analysis of Rhythm, MA, 16/i, 45-75.
  • Agmon, E. (1997), Octave Equivalence versus Octave Relatedness: Circle versus Helix; chord versus melody, Proceedings of the Third Triennial Escom Conference, Uppsala University, 122-127.
  • Baker, J., D. Beach and J. Bernard (1997) (ed.), Music Theory in Concept and Practice. Eastman Studies in Music.
  • Cope, D. (1997), Techniques of the Contemporary Composer. (en particulier le chapitre 7: "Pitch-Class sets", 77-98).
  • Cohn, R. (1997), Neo-Riemannian Operations, Parsimonious Trichords, and their Tonnetz Representations, JMT, Vol. 41, No. 1, 1-66.
  • Noll, T. (1997), Morphologische Grundlagen der abendländischen Harmonik, Musikometrika, Volume 7.
  • Carey, N. (1998), Distribution Modulo 1 and Musical Scales, PhD Thesis, University of Rochester, 1998.
  • Clough, J. (1998), A rudimentary geometric model for contextual transposition and inversion, JMT, 42(2), 297-319.
  • Cohn, R. (1998), Introduction to neo-riemannian theory: a survey and a historical perspective, JMT, 42(2), 167-180.
  • Cohn, R. (1998), Square dances with cubes, JMT, 42(2), 283-296.
  • Douthett, J. and P. Steinbach (1998), Parsimonious graphs: a study in parsimony, contextual transformations, and modes of limited transposition, JMT, 42(2), 241-263.
  • Heinemann, S. (1998), Pitch-Class Set Multiplication in Theory and Practice, MTS, 20(1), 72-96.
  • Krumhansl, C. (1998), Perceived Triad Distance: Evidence Supporting the Psychological Reality of Neo-Riemannian Transformations, JMT, Vol. 42, No. 2 (Autumn), 265-81.
  • Morris, R. (1998), Voice-Leading Spaces, MTS, 20(2), 175-208.
  • Scott, D. and E. J. Isaacson (1998), The Interval Angle: a similarity measure for pitch-class sets, PNM, 36(2), 107-142.
  • Alegant, B. (1999), When Even becomes Odd : a partitional approach to inversion, JMT, 43(2), 193-230.
  • Clough, J., N. Engebretsen and J. Kochavi (1999), Scales, Sets and Interval Cycles: A Taxonomy, MTS, 21(1), 74-104.

2000-2008

  • Gollin, E. H. (2000), Representations of Space and Conceptions of distance in Transformational Music Theories, PhD, Harvard University.
  • Gould, M. (2000), Balzano and Zweifel: another look at generalized diatonic scales, PNM, 38(2), 88-105.
  • Santa, M. (2000), Analysing Post-Tonal Diatonioc Music: a Modulo 7 perspective, MA, 19/ii, 167-201.
  • Alegant, B. (2001), Cross-Partitions as Harmony and Voice Leading in Twelve-Tone Music, MTS, 23(1), 1-40.
  • Rahn, J. (2001), Music Inside Out. Going too far in musical essays, Overseas Publisher Association.
  • Klumpenhouwer, H. (2002), Dualist tonal space and transformation in nineteenth-century musical though. In The Cambridge History of Western Music Theory (Thomas Christensen ed.), Cambridge: Cambridge University Press, 456-76.
  • Hascher, X. (2002), Liszt et les sources de la notion d'agrégat, Analyse musicale, 43 (juin), 48-56
  • Hook, J. (2002), Uniform Triadic Transformations, JMT, Vol. 46, No2. 1-2 (Spring/Fall), 57-126.
  • Noll, T. (2002), Tone Apperception, Weber-Fechner's Law and the GIS-Model, (Séminaire MaMuX, séance « Formalisations et représentations musicales : entre Set-Theory, théories diatoniques et approches néo-riemanniennes », IRCAM, décembre)
  • Andreatta, M. et Schaub, S. (2003), Une introduction à la Set Theory : Les concepts à la base des théories d'Allen Forte et de David Lewin, Mus, Vol. X/1, 73-92 draft version
  • Cathé, P. (2003), Charles Koechlin, Sicilienne de la Deuxième Sonatine, opus 59 n° 2 : vecteurs et modalité harmonique, Mus, Vol. X/3-4.
  • Meeùs, N. (2003), Vecteurs harmoniques, Mus, Vol. X/3-4.
  • Riotte, A. (2003), Quelques réflexions sur l'analyse formalisée, Mus, Vol. X/1, 61-71.
  • Quinn, I. (2004), A Unified Theory of Chord Quality in Equal Temperaments, Ph. D. thesis, Eastman School of Music, University of Rochester, Rochester, New York.
  • Chouvel, J.-M. (2005), Représentation harmonique hexagonale toroïde, Musimédiane, n°1, décembre.
  • Gollin, E. (2005), Neo-Riemannian Theory, GMTH (Deutsche Gesellschaft für Musiktheorie).
  • Picard, F. (2005), Echelles et modes, pour une musicologie géenéralisée, (Document interne CRLM, disponible en pdf)
  • Tymoczko, D. (2006), The Geometry of Musical Chords, Science 313, 72-74 (Software ChordGeometries)
  • Amiot, E. (2007), David Lewin and Maximally Even Sets, JMM 1 (3), 157-172.
  • Andreatta, M., J.-M. Bardez, and J. Rahn (éd.) (2008), Autour de la Set Theory / Around Set Theory, Collection "Musique/Sciences", Ircam/Delatour, Sampzon.
  • Clifton C., Quinn, I. et Tymoczko D., (2008), Generalized Voice-Leading Spaces, Science 320 (5874), 346.
  • Hall, R. W. (2008), Geometrical Music Theory, Science, 320 (5874), 328-329.
  • Jedrzejewski, F. (2008), Generalized diatonic scales, JMM, 2(1), 21-36.
  • Junod, J. (2008), Etude combinatoire et informatique du caractère diatonique des échelles à sept notes, Mémoire de Master ATIAM, Ircam/Université Paris 6. Atlas des modes.


Textes de référence

  • Forte, A. (1973) The Structure of Atonal Music, Yale University Press.
  • Riotte, A. (1978-1990) Formalisation de structures musicales (Contenu des cours dispensé à l'Université Paris 8 de 1978 à 1990). Disponible en ligne à l'adresse : http://www.andreriotte.org/formalisation/index.htm
  • Rahn, J. (1980) Basic Atonal Theory, Schirmer Books.
  • Lewin, D. (1987) Generalized Musical Intervals and Transformations, Yale University Press (nouvelle édition 2007, Oxford University Press).
  • Morris, R. (1987) Composition with Pitch-Classes : A Theory of Compositional Design, Yale University Press.
  • Lewin, D. (1993) Musical Form and Transformation: 4 Analytic Essays, Yale University Press (nouvelle édition 2007, Oxford University Press).
  • Verdi, L. (1998) Organizzazione delle altezze nello spazio temperato, Ensemble '900, Treviso.
  • Morris, R. (2001) Class Notes for Advanced Atonal Music Theory, Frog Peak Music.
  • Mazzola, G. (2002) The Topos of Music, Birkhäuser Verlag.
  • Johnson, T. A. (2003) Foundations of diatonic theory : a mathematical ly based approach to music fundamentals, Emeryville, CA : Key College Pub.
  • Jedrzejewski, F. (2006) Mathematical Theory of Music, Collection "Musique/Sciences", Ircam/Delatour France.



Moreno Andreatta,
Equipe Représentations Musicales
IRCAM/CNRS
Moreno.Andreatta@ircam.fr

 


mamux/documents/st-tt-dt-nrt.txt · Dernière modification: 2013/03/25 01:09 par jean-admin